Defect Chemistry in High-Voltage Cathode Materials for Lithium-Ion Batteries.

Adv Mater

Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, IL, 60439, USA.

Published: October 2024

High-voltage cathodes (HVCs) have emerged as a paramount role for the next-generation high-energy-density lithium-ion batteries (LIBs). However, the pursuit of HVCs comes with inherent challenges related to defective structures, which significantly impact the electrochemical performance of LIBs. The current obstacle lies in the lack of a comprehensive understanding of defects and their precise effects. This perspective aims to provide insights into defect chemistry for governing HVCs. The classifications, formation mechanisms, and evolution of defects are outlined to explore the intricate relationship between defects and electrochemical behavior. The pressing need for cutting-edge characterization techniques that comprehensively investigate defects across various temporal and spatial scales is emphasized. Building on these fundamental understandings, engineering strategies such as composition tailoring, morphology design, interface modification, and structural control to mitigate or utilize defects are thoroughly discussed for enhanced HVCs performance. These insights are expected to provide vital guidelines for developing high-performance HVCs for next-generation high-energy lithium-ion batteries.

Download full-text PDF

Source
http://dx.doi.org/10.1002/adma.202411311DOI Listing

Publication Analysis

Top Keywords

lithium-ion batteries
12
defect chemistry
8
hvcs
5
defects
5
chemistry high-voltage
4
high-voltage cathode
4
cathode materials
4
materials lithium-ion
4
batteries high-voltage
4
high-voltage cathodes
4

Similar Publications

Silicon/carbon (Si/C) materials have achieved commercial applications as a solution to the problems of large volume expansion and short lifespan of silicon-based anodes in lithium-ion batteries. However, the potential risk of structural fracture and localized differences in surface adsorption properties lead to difficulties in maintaining the structural integrity of Si/C anodes using conventional binders during repeated lithiation/delithiation. Herein, an aqueous binder (PVA-g-M) based on polyvinyl alcohol (PVA) grafted methacrylic acid (MAA) obtained by self-emulsifyingemulsion polymerization is reported.

View Article and Find Full Text PDF

Spray-Flame Synthesis (SFS) and Characterization of LiAlYTi(PO) [LA(Y)TP] Solid Electrolytes.

Nanomaterials (Basel)

December 2024

Institute for Energy and Materials Processes-Reactive Fluids, University of Duisburg-Essen, 47057 Duisburg, Germany.

Solid-state electrolytes for lithium-ion batteries, which enable a significant increase in storage capacity, are at the forefront of alternative energy storage systems due to their attractive properties such as wide electrochemical stability window, relatively superior contact stability against Li metal, inherently dendrite inhibition, and a wide range of temperature functionality. NASICON-type solid electrolytes are an exciting candidate within ceramic electrolytes due to their high ionic conductivity and low moisture sensitivity, making them a prime candidate for pure oxidic and hybrid ceramic-in-polymer composite electrolytes. Here, we report on producing pure and Y-doped Lithium Aluminum Titanium Phosphate (LATP) nanoparticles by spray-flame synthesis.

View Article and Find Full Text PDF

MXenes, have been considered as a new generation anode material in lithium-ion batteries for lower lithium-ion diffusion barriers and superior conductivity. Unfortunately, their structures are prone to aggregation and stacking, hindering further shuttle of lithium ions and electrons, resulting in lower discharge capacity. Therefore, the introduction of interlayer spacers for the preparation of MXene-based hybrids has attracted much attention.

View Article and Find Full Text PDF

Commercial SiO Encapsulated in Hybrid Bilayer Conductive Skeleton as Stable Anode Coupling Chemical Prelithiation for Lithium-Ion Batteries.

Small

January 2025

Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, P. R. China.

Although Silicon monoxide (SiO) is regarded as the most promising next-generation anode material, the large volume expansion, poor conductivity, and low initial Coulombic efficiency (ICE) severely hamper its commercialization application. Designing a multilayer conductive skeleton combined with advanced prelithiation technology is considered an effective approach to address these problems. Herein, a reliable strategy is proposed that utilizes MXene and carbon nanotube (CNT) as dual-conductive skeletons to encapsulate SiO through simple electrostatic interaction for high-performance anodes in LIBs, while also performing chemical prelithiation.

View Article and Find Full Text PDF

Dual functional coordination interactions enable fast polysulfide conversion and robust interphase for high-loading lithium-sulfur batteries.

Mater Horiz

January 2025

National local joint engineering research center for Lithium-ion Batteries and Materials Preparation Technology, Key Laboratory of Advanced Batteries Materials of Yunnan Province, Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, 650093, China.

The stable operation of high-capacity lithium-sulfur batteries (LSBs) has been hampered by slow conversion kinetics of lithium polysulfides (LiPSs) and instability of the lithium metal anodes. Herein, 6-(dibutylamino)-1,3,5-triazine-2,4-thiol (DTD) is introduced as a functional additive for accelerating the kinetics of cathodic conversion and modulating the anode interface. We proposed that a coordination interaction mechanism drives the polysulfide conversion and modulates the Li solvated structure during the binding of the N-active site of DTD to LiPSs and lithium salts.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!