Impact of N-Terminal Domain Conformation and Domain Interactions on RfaH Fold Switching.

Proteins

Department of Physics and Physical Oceanography, Memorial University of Newfoundland, St Johns, NL, Canada.

Published: October 2024

AI Article Synopsis

  • RfaH is a metamorphic protein that regulates transcription and translation, requiring two structural changes for its functions: domain dissociation and fold switching.
  • The C-terminal domain (CTD) shifts from an all-α fold to an all-β fold upon binding with RNA polymerase, while the N-terminal domain (NTD) remains mostly stable.
  • Simulations indicate that a remodeled β-hairpin in the NTD lowers the stability of the CTD, allowing for earlier domain dissociation, but is not solely responsible for the transition; fold switching rates vary with temperature, suggesting an optimal condition for this process.

Article Abstract

RfaH is a two-domain metamorphic protein involved in transcription regulation and translation initiation. To carry out its dual functions, RfaH relies on two coupled structural changes: Domain dissociation and fold switching. In the free state, the C-terminal domain (CTD) of RfaH adopts an all-α fold and is tightly associated with the N-terminal domain (NTD). Upon binding to RNA polymerase (RNAP), the domains dissociate and the CTD transforms into an all-β fold while the NTD remains largely, but not entirely, unchanged. We test the idea that a change in the conformation of an extended β-hairpin (β3-β4) located on the NTD, helps trigger domain dissociation. To this end, we use homology modeling to construct a structure, H, which is similar to free RfaH but with a remodeled β3-β4 hairpin. We then use an all-atom physics-based model enhanced with a dual basin structure-based potential to simulate domain separation driven by the thermal unfolding of the CTD with NTD in a fixed, folded conformation. We apply our model to both free RfaH and H. For H we find, in line with our hypothesis, that the CTD exhibits lower stability and the domains dissociate at a lower temperature T, as compared to free RfaH. We do not, however, observe complete refolding to the all-β state in these simulations, suggesting that a change in β3-β4 orientation aids in, but is not sufficient for, domain dissociation. In addition, we study the reverse fold switch in which RfaH returns from a domain-open all-β state to its domain-closed all-α state. We observe a T-dependent transition rate; fold switching is slow at low T, where the CTD tends to be kinetically trapped in its all-β state, and at high-T, where the all-α state becomes unstable. Consequently, our simulations suggest an optimal T at which fold switching is most rapid. At this T, the stabilities of both folds are reduced. Overall, our study suggests that both inter-domain interactions and conformational changes within NTD may be important for the proper functioning of RfaH.

Download full-text PDF

Source
http://dx.doi.org/10.1002/prot.26755DOI Listing

Publication Analysis

Top Keywords

fold switching
16
domain dissociation
12
free rfah
12
all-β state
12
rfah
9
domain
8
n-terminal domain
8
domains dissociate
8
all-α state
8
fold
7

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!