Infection of In Vivo and In Vitro Pines with the Pinewood Nematode Bursaphelenchus xylophilus and Isolation of Induced Volatiles.

J Vis Exp

INIAV, I.P., National Institute for Agrarian and Veterinary Research, I.P.; GREEN-IT Bioresources for Sustainability, Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa (ITQB NOVA).

Published: September 2024

The pinewood nematode (PWN) is a phytoparasite that causes pine wilt disease (PWD) in conifer species. This plant parasitic nematode has heavily contributed to pine deforestation in Asian countries, e.g., Japan, China, and Korea. Over the last two decades, in Europe, Portugal and Spain have been greatly affected. Research on the mechanisms of PWN infection and/or PWD progression in susceptible host species relies on the controlled infection of pine seedlings under greenhouse conditions. This technique is laborious and mobilizes substantial economic and human resources. Additionally, it can be prone to variability that results from the genetic diversity associated with some pine species but also from the interference of external factors. As an alternative, in vitro co-cultures of pine with PWNs offer a more advantageous system for studying biochemical changes since they a) allow controlling single environmental or nutritional variables, b) occupy less space, c) require less time to obtain, and d) are free from contamination or from host genetic variation. The following protocol details the standard in vivo PWN infection of Pinus pinaster, the maritime pine, and the establishment of the novel in vitro co-cultures of pine shoots with the PWN as an improved methodology to study this phytoparasite influence on pine volatiles. PWN-induced volatiles are extracted from in vivo and in vitro infected pines by hydrodistillation and distillation-extraction, and the emitted volatiles are captured by solid phase microextraction (SPME), using fiber or packed column techniques.

Download full-text PDF

Source
http://dx.doi.org/10.3791/67149DOI Listing

Publication Analysis

Top Keywords

vivo vitro
8
pinewood nematode
8
pine
8
pwn infection
8
vitro co-cultures
8
co-cultures pine
8
infection
4
infection vivo
4
vitro
4
vitro pines
4

Similar Publications

Ligand docking in the sigma-1 receptor compared to the sigma-1 receptor-BiP complex and the effects of agonists and antagonists on C. elegans lifespans.

Biomed Pharmacother

December 2024

Center of Excellence on Natural Products for Neuroprotection and Anti-Ageing, Chulalongkorn University, Bangkok 10330, Thailand; Research, Innovation and International Affairs, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand. Electronic address:

Model organisms are commonly used to study human diseases; we set out to understand the relevance of several model organisms with relation to the σ1R protein. The study explored the interactions of σ1R with various agonists, antagonists across different species. Ligand and protein-protein (σ1R-BiP) docking approaches were used to understand the significance of σ1R in modulating neuroprotective mechanisms and its potential role in Alzheimer's.

View Article and Find Full Text PDF

Galectin-3 secreted by triple-negative breast cancer cells regulates T cell function.

Neoplasia

December 2024

Felsenstein Medical Research Center, Beilinson Campus, Petah Tikva, Israel; Tel Aviv University, Faculty of Medicine and Health Sciences, Tel Aviv, Israel; Rabin Medical Center, Beilinson Campus, Petah Tikva, Israel; Davidoff Cancer Center, Beilinson Campus, Petah Tikva, Israel. Electronic address:

Triple-negative breast cancer (TNBC) is an aggressive subtype that accounts for 10-15 % of breast cancer. Current treatment of high-risk early-stage TNBC includes neoadjuvant chemo-immune therapy. However, the substantial variation in immune response prompts an urgent need for new immune-targeting agents.

View Article and Find Full Text PDF

NAC-Grafted ROS-Scavenging Polymer Nanoparticles for Modulation of Acute Lung Injury Microenvironment In Vivo.

Biomacromolecules

December 2024

MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, China.

-Acetyl cysteine (NAC) is an essential molecule that boosts acute lung injury (ALI) defense via its direct antioxidant capability. Nevertheless, the therapeutic use of NAC is limited due to its poor bioavailability and short half-life. In this study, NAC was grafted to the polyurethane consisting of poly(propylene fumarate), poly(thioketal), and 1,6-hexamethylene diisocyanate (PFTU) to reduce excessive oxidative stress and inflammatory factors in ALI.

View Article and Find Full Text PDF

Drug resistance of cancers remains a major obstacle due to limited therapeutics. Lysosome targeting is an effective method for overcoming drug resistance in cancer cells. St-N (ent-13-hydroxy-15-kaurene-19-acid N-methylpiperazine ethyl ester) is a novel alkaline stevioside derivative with an amine group.

View Article and Find Full Text PDF

The involvement of Toll-like receptor 2 (TLR2) in leptospirosis is poorly understood. Our systematic review examined its role across in-vitro, in-vivo, ex-vivo, and human studies. Original articles published in English up to January 2024, exploring the role of TLR2 during leptospirosis, were selected from databases including PubMed, Web of Science, Scopus, Trip, and Google Scholar.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!