Traditional macromolecules or nanoscale Mn chelate-based magnetic resonance imaging (MRI) contrast agents (CAs) suffer from complicated and laborious synthesis processes, relatively low kinetic stability and relaxivity, limiting their clinical applications. Herein, we fabricated a series of kinetically inert Mn chelate-backboned polymers, P(MnL-PEG), through a facile and one-pot polymerization process. Particularly, P(MnL-PEG)-3 demonstrates a significantly higher relaxivity of 23.9 Mn mM s at 1.5 T than that of previously reported small molecules and macromolecules or nanoscale Mn chelate-based CAs. Due to its high relaxivity, extended blood circulation, hepatocyte-specific uptake, and kidneys metabolism, P(MnL-PEG)-3 presents significantly enhanced contrast in blood vessel, liver, and kidneys imaging compared to clinical Gd-based CAs (Gd-EOB-DTPA and Gd-DOTA) at a dosage of 0.05 mmol Mn/Gd kg BW, and can accurately diagnose orthotopic H22 liver tumors in animal models. We anticipate that this work will promote the development of clinically relevant MRI CAs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.nanolett.4c03804 | DOI Listing |
ChemSusChem
December 2024
National & Local Joint Engineering Research Center on Biomass Resource Utilization, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, P. R. China.
The cleavage and functionalization of carbon-carbon bonds are crucial for the reconstruction and upgrading of organic matrices, particularly in the valorization of biomass, plastics, and fossil resources. However, the inherent kinetic inertness and thermodynamic stability of C-C σ bonds make this process challenging. Herein, we fabricated a glucose-derived defect-rich hierarchical porous carbon as a heterogeneous catalyst for the oxidative cleavage and esterification of C(CO)-C bonds.
View Article and Find Full Text PDFMolecules
December 2024
Department of Analytical and Inorganic Chemistry, Faculty of Chemistry, University of Bialystok, Ciołkowskiego 1K, 15-245 Bialystok, Poland.
In this work, for the first time, the sorption behaviour of platinum and palladium on polyethylene microplastics (PE-MP) was studied. To simulate natural conditions, part of PE-MP was subjected to the ageing process in lake water under the influence of solar radiation. The original and aged PE-MP was characterised using elemental analysis, FT-IR, SEM-EDX, and nitrogen porosimetry methods.
View Article and Find Full Text PDFSmall
January 2025
Department of Chemistry, Indian Institute of Technology Delhi, New Delhi, 110016, India.
Altering the edge sites of 2D MXenes for electrochemical dinitrogen reduction reaction (ENRR) is widely reported, whereas activation of its relatively inert basal planes is neglected. Herein, the activation and the optimization of the basal planes of TiCT (T = *F, *O, and *OH) MXenes toward enhanced ENRR to ammonia is reported. The balanced surface functionalization in TiCT regulates the ENRR kinetics by regulating the potential of zero charge (E) and the electrochemical work function ( ).
View Article and Find Full Text PDFJ Phys Chem Lett
January 2025
Beijing National Laboratory for Molecular Science (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
J Am Chem Soc
January 2025
Department of Chemistry, University of California, Berkeley, California 94720, United States.
Dioxygen (O) is a potent oxidant used by aerobic organisms for energy transduction and critical biosynthetic processes. Numerous metalloenzymes harness O to mediate C-H bond hydroxylation reactions, but most commonly feature iron or copper ions in their active site cofactors. In contrast, many manganese-activated enzymes─such as glutamine synthetase and isocitrate lyase─perform redox neutral chemical transformations and very few are known to activate O or C-H bonds.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!