Investigate the Processability of Biobased Thermoplastics Used in Nonwoven Fabrics.

ACS Polym Au

Biomaterial processing and products/Textile and Nonwoven materials, VTT Technical Research Centre of Finland Ltd, Visiokatu 4, 33720 Tampere, Finland.

Published: October 2024

The Covid-19 pandemic increased enormously the manufacturing and usage of face masks and other personal protective equipment (PPE), resulting in accumulation of plastic waste and, thus, causing universal environmental concerns. In addressing the issue of waste reduction and finding alternatives for fossil-based products, investigation of different biobased and biodegradable polymers plays a crucial role. This study examines the processability characteristics of three commonly used biobased polymers available in the market: biobased poly(lactic acid) (PLA), partly biobased and biodegradable poly(butylene succinate) (PBS), and biobased high-density poly(ethylene) (BioHDPE). The investigation combines substantial polymer analysis with subsequent processability trials in two different spunmelt processes, namely, meltblow (MB) and the Nanoval technology, aiming to reveal the differences and difficulties in the processing behavior and pointing out advantages and/or disadvantages of the respective polymer/technology combination. In general, the observed processability behavior and outcomes indicate that within the used processes PLA exhibits superior processability compared to PBS and BioHDPE. Both the meltblow and Nanoval processing of PLA demonstrated a consistent production of fibers and efficient uptake without any compromise on the throughput. In contrast, the processing of PBS using Nanoval required the utilization of significantly elevated temperatures, as indicated by a rheological study. Furthermore, the rheological evaluation revealed that the viscosity of BioHDPE was excessively elevated, rendering it unsuitable for effective processing by the Nanoval method. The microfibers in the PLA-based meltblown fabric had a higher surface area, explaining why the PLA fibers were able to function as a barrier and, thus, contribute to the mitigation of air permeability adjustable between 500 and 1000 l·s·m and thus competitive or even superior to PP nonwovens of the same fiber diameter and base weight (1480 l·s·m). Overall, these results showed that PLA can be an alternative raw material for fossil-based nonwovens of PPE applying, especially, the meltblown technique.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11468515PMC
http://dx.doi.org/10.1021/acspolymersau.4c00023DOI Listing

Publication Analysis

Top Keywords

biobased biodegradable
8
meltblow nanoval
8
biobased
6
pla
5
investigate processability
4
processability biobased
4
biobased thermoplastics
4
thermoplastics nonwoven
4
nonwoven fabrics
4
fabrics covid-19
4

Similar Publications

Persistent oxidative stress following bone defects significantly impedes the repair of bone tissue. Designing an antioxidative hydrogel with a suitable mechanical strength can help alter the local microenvironment and promote bone defect healing. In this work, α-lipoic acid (LA), a natural antioxidant small molecule, was chemically cross-linked with lipoic acid-functionalized poly(ethylene glycol) (PEG, = 6k or 10k) in sodium bicarbonate solution, to prepare LA-PEG hydrogels (LP, = 6k or 10k).

View Article and Find Full Text PDF

Ecotoxicity of Biodegradable Microplastics and Bio-based Microplastics: A Review of in vitro and in vivo Studies.

Environ Manage

December 2024

College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province, 712100, PR China.

As biodegradable and bio-based plastics increasingly replace conventional plastics, the need for a comprehensive understanding of their ecotoxicity becomes more pressing. This review systematically presents the ecotoxicity of the microplastics (MPs) from different biodegradable plastics and bioplastics on various animals and plants. High doses of polylactic acid (PLA) MPs (10%) have been found to reduce plant nitrogen content and biomass, and affect the accumulation of heavy metals in plants.

View Article and Find Full Text PDF

Optimization of fermentation conditions for whole cell catalytic synthesis of D-allulose by engineering Escherichia coli.

Sci Rep

December 2024

State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Science, Jinan, 250353, People's Republic of China.

D-allulose/D-psicose is a significant rare sugar with broad applications in the pharmaceutical, food, and other industries. In this study, we cloned the D-allulose 3-epimerase (DPEase) gene from Arthrobacter globiformis M30, using pET22b as the vector. The recombinant E.

View Article and Find Full Text PDF

In sustainable construction and packaging, the development of novel bio-based materials is crucial, driving a re-evaluation of traditional components. Lightweight, biodegradable materials, including xerogels, have great potential in architectural and packaging applications. However, reinforcing these materials to improve their mechanical strength remains a challenge.

View Article and Find Full Text PDF

Regulation mechanism of the long-chain -alkane monooxygenase gene in RAG-1.

Appl Environ Microbiol

December 2024

Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, Tianjin, China.

Unlabelled: As toxic pollutants, -alkanes are pervasively distributed in most environmental matrices. Although the alkane monooxygenase AlmA plays a critical role in the metabolic pathway of solid long-chain -alkanes (≥C) that are extremely difficult to degrade, the mechanism regulating this process remains unclear. Here, we characterized the function of AlmA in RAG-1, which was mainly involved in the degradation of long-chain -alkanes (C-C), among which, -C induced the promoter activity most.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!