Boosting the transport and selectivity properties of membranes based on polymers of intrinsic microporosity (PIMs) toward one specific working analyte of interest is challenging. In this work, a novel family of PIM membranes, prepared by casting and exhibiting optima mechanical properties and high thermal stability, was synthesized from 4,4'-(2,2,2-trifluoro-1-phenylethane-1,1-diyl) bis(benzene-1,2-diol) and two tetrafluoro-nitrile derivatives. Gas permeability measurements evidenced a CO/CH selectivity up to 170% relative to the reference polymer, PIM-1, in agreement with their calculated fractional free volume and the analysis of the textural properties by N and CO gas adsorption. Besides, the chemical modification by acid hydrolysis of the PIM membranes favored the permeability for lithium ions (LiCl 2M, 6 × 10 cm·s) compared to other alkali metal analogs such as sodium (NaCl 2M, 7.38 × 10 cm·s) and potassium (KCl 2M, 1.05 × 10 cm·s). Moreover, the complete mitigation of the crossover of redox species with higher molecular sizes than the ions from alkali metal salts was confirmed by using benchtop NMR methods. Additionally, the modified PIM membranes were measured in a symmetric electrochemical flow cell using an aqueous electrolyte by combining lithium ferro/ferricyanide redox compounds and lithium chloride. The electrochemical tests showed low polarization, high-rate capability, and capacity retention values of 99% when cycled at 10 mA·cm for over 50 cycles. Based on these results, these polymers could be used as highly selective and conducting membranes in electrodialysis for lithium separation and lithium-based redox flow batteries and as a protective layer in high-energy density lithium metal batteries.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11468783 | PMC |
http://dx.doi.org/10.1021/acs.macromol.4c01243 | DOI Listing |
ACS Appl Mater Interfaces
January 2025
School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, P. R. China.
Defective MOFs have been identified as promising candidates for efficient membrane-based separation applications. However, the utilization of defective MOFs in membrane gas separation is still in its infancy due primarily to the inefficient molecular differentiation induced by structural defects. Herein, we report a strategic combination of ionic liquid (IL) and defective UiO-66-NH MOF to ameliorate the CO/N selectivity within the highly permeable PIM-1 polymer.
View Article and Find Full Text PDFNat Commun
January 2025
State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, China.
High-performance gas separation membranes have potential in industrial separation applications, while overcoming the permeability-selectivity trade-off via regulable aperture distribution remains challenging. Here, we report a strategy to fabricate Polyolefin Reweaved Ultra-micropore Membrane (PRUM) to acquire regulable microporous channel. Specifically, olefin monomers are dispersed uniformly into a pristine membrane (e.
View Article and Find Full Text PDFSmall
December 2024
School of Nuclear Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
Ultrathin polymer membranes on porous substrates exhibit excellent gas and ion permeability and have important applications in many fields, such as membrane separation and batteries. However, there is still a lack of facile and general methods for the direct preparation of ultrathin polymer membranes on porous substrates, especially from polymer solutions. Within this work, a new strategy to fabricate centimeter-size ultrathin polymer membranes (thickness down to 16 nm) is presented directly on porous supports by using the liquid-liquid interfacial spin-coating technique.
View Article and Find Full Text PDFFront Cell Infect Microbiol
December 2024
State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei, China.
Introduction: Viral infection usually stimulates a variety of host cell factors to modulate the life cycle of the virus. PIM1, a serine/threonine protein kinase widely involved in cell proliferation, survival, differentiation and apoptosis, was recently reported to be upregulated by Zika virus (ZIKV) infection. However, how ZIKV-PIM1 interactions affect the viral life cycle are not fully understood.
View Article and Find Full Text PDFJ Biomol Struct Dyn
December 2024
Department of Bioscience and Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, India.
The complex cell envelope of pathogenic mycobacteria provides a strong barrier against the host immune system and various antibiotics. Phosphatidyl-myo-inositol mannosides (PIMs), lipomannan (LM), and lipoarabinomannan (LAM) are structurally important elements of mycobacterial cell envelope and also play crucial roles in modulating the host immune functions. At the cytoplasmic side of the mycobacterial inner membrane, phosphatidyl-myo-inositol (PI) is mannosylated by α-mannosyltransferases PimA and PimB' to synthesize PIM using GDP-mannose (GDPM) as the mannose donor.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!