AI Article Synopsis

  • - The study investigates neurodevelopmental issues in preschool children with tetralogy of Fallot (TOF) and aims to identify objective imaging markers using advanced MRI techniques, focusing on radiomics and morphological features.
  • - It involved 33 children who had surgery for TOF and 29 healthy controls, utilizing high-resolution MRI to extract features for constructing predictive models and implementing machine learning methods for analysis.
  • - The effectiveness of the imaging markers was evaluated against clinical neurodevelopmental assessments, exploring correlations between the imaging findings and cognitive development metrics.

Article Abstract

Background: Despite the improved survival rates of children with tetralogy of Fallot (TOF), various degrees of neurodevelopmental disorders persist. Currently, there is a lack of quantitative and objective imaging markers to assess the neurodevelopment of individuals with TOF. This study aimed to noninvasively examine potential quantitative imaging markers of TOF neurodevelopment by combining radiomics signatures and morphological features and to further clarify the relationship between imaging markers and clinical neurodevelopment metrics.

Methods: This study included 33 preschool children who had undergone surgical correction for TOF and 29 healthy controls (36 in the training cohort and 26 in the testing cohort), all of whom underwent three-dimensional T1-weighted high-resolution (T1-3D) head magnetic resonance imaging (MRI). Radiomics features were extracted by Pyradiomics to construct radiomics models, while surface morphometry (surface and volumetric) features were analyzed to build morphometry models. Merged models integrating radiomics and morphometry features were subsequently developed. The optimal discriminative radiomics signatures were identified via least absolute shrinkage and selection operator (LASSO). Machine learning classification models include support vector machine (SVM) with radial basis function (RBF) and multivariable logistic regression (MLR) models, both of which were used to evaluate the potential imaging biomarkers. Performances of models were evaluated based on their calibration and classification metrics. The area under the receiver operating characteristic curves (AUCs) of the models were evaluated using the Delong test. Neurodevelopmental assessments for children with corrected TOF were conducted with the Wechsler Preschool and Primary Scale of Intelligence-Fourth Edition (WPPSI-IV). Furthermore, the correlation of the significant discriminative indicators with clinical metrics and neurodevelopmental scales was evaluated.

Results: Twelve discriminative radiomics signatures, optimized for classification, were identified. The performance of the merged model (AUCs of 0.922 and 0.917 for the training set and test set with SVM, respectively) was superior to that of the single radiomics model (AUCs of 0.915 and 0.917 for the training set and test set with SVM, respectively) and that of the single morphometric models (AUCs of 0.803 and 0.756 for the training set and test set with SVM, respectively). The radiomics model demonstrated higher significance than did the morphometric models in training set with SVM (AUC: 0.915 . 0.803; P<0.001). Additionally, the significant indicators showed a correlation with clinical indicators and neurodevelopmental scales.

Conclusions: MRI-based radiomics features combined with morphometry features can provide complementary information to identify neurodevelopmental abnormalities in children with corrected TOF, which will provide potential evidence for clinical diagnosis and treatment.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11467234PMC
http://dx.doi.org/10.21037/tp-24-219DOI Listing

Publication Analysis

Top Keywords

training set
16
set svm
16
imaging markers
12
radiomics signatures
12
set test
12
test set
12
radiomics
9
models
9
magnetic resonance
8
resonance imaging
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!