Background: Breast cancer is a complex and heterogeneous disease, and understanding its regulatory mechanisms and network characteristics is essential for identifying therapeutic targets and developing effective treatment strategies. This study aimed to unravel the intricate network of interactions involving differentially expressed genes, microribonucleic acid (miRNAs), and proteins in breast cancer through an integrative analysis of multi-omic data from Cancer Genome Atlas Breast Invasive Carcinoma (TCGA-BRCA) dataset.

Methods: The TCGA-BRCA dataset was used for data acquisition, which included RNA sequencing data for gene expression, miRNA sequencing data for miRNA expression, and protein expression quantification data. Various R packages, such as TCGAbiolinks, limma, and RPPA, were employed for data preprocessing and integration. Differential expression analysis, network construction, miRNA regulation exploration, pathway enrichment analysis, and independent dataset validation were performed.

Results: Eight consistently upregulated hub genes-including ACTB, HSP90AA1, FN1, HSPA8, CDC42, CDH1, UBC, and EP300-were identified in breast cancer, indicating their potential significance in driving the disease. Pathway enrichment analysis revealed highly enriched pathways in breast cancer, including proteoglycans in cancer, PI3K-Akt, and mitogen-activated protein kinase signaling.

Conclusion: This integrated multi-omic data analysis provides valuable insights into the regulatory mechanisms, network characteristics, and functional roles of genes, miRNAs, and proteins in breast cancer. The findings contribute to our understanding of the molecular landscape of breast cancer, facilitate the identification of potential therapeutic targets, and inform strategies for effective treatment.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11469691PMC
http://dx.doi.org/10.47176/mjiri.38.63DOI Listing

Publication Analysis

Top Keywords

breast cancer
28
multi-omic data
12
regulatory mechanisms
12
mechanisms network
12
network characteristics
12
cancer
9
analysis multi-omic
8
data
8
breast
8
therapeutic targets
8

Similar Publications

GradeDiff-IM: An Ensembles Model-based Grade Classification of Breast Cancer.

Biomed Phys Eng Express

January 2025

School of Engineering and Computing, University of the West of Scotland, University of the West of Scotland - Paisley Campus, Paisley PA1 2BE, UK, City, Paisley, PA1 2BE, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND.

Cancer grade classification is a challenging task identified from the cell structure of healthy and abnormal tissues. The partitioner learns about the malignant cell through the grading and plans the treatment strategy accordingly. A major portion of researchers used DL models for grade classification.

View Article and Find Full Text PDF

Background: Bangladesh and West Bengal, India, are 2 densely populated South Asian neighboring regions with many socioeconomic and cultural similarities. In dealing with breast cancer (BC)-related issues, statistics show that people from these regions are having similar problems and fates. According to the Global Cancer Statistics 2020 and 2012 reports, for BC (particularly female BC), the age-standardized incidence rate is approximately 22 to 25 per 100,000 people, and the age-standardized mortality rate is approximately 11 to 13 per 100,000 for these areas.

View Article and Find Full Text PDF

Purpose: Breast cancer ranks as the most prevalent cancer in women, characterized by heightened fatty acid synthesis and glycolytic activity. Fatty acid synthase (FASN) is prominently expressed in breast cancer cells, regulating fatty acid synthesis, thereby enhancing tumor growth and migration, and leading to radioresistance. This study aims to investigate how FASN inhibition affects cell proliferation, migration, and radioresistance in breast cancer, as well as the mechanisms involved.

View Article and Find Full Text PDF

Triple negative breast cancers often contain higher numbers of tumour-infiltrating lymphocytes compared with other breast cancer subtypes, with their number correlating with prolonged survival. Since little is known about tumour-infiltrating lymphocyte trafficking in triple negative breast cancers, we investigated the relationship between tumour-infiltrating lymphocytes and the vascular compartment to better understand the immune tumour microenvironment in this aggressive cancer type. We aimed to identify mechanisms and signaling pathways responsible for immune cell trafficking in triple negative breast cancers, specifically of basal type, that could potentially be manipulated to change such tumours from immune "cold" to "hot" thereby increasing the likelihood of successful immunotherapy in this challenging patient population.

View Article and Find Full Text PDF

This study presents a novel approach to modeling breast cancer dynamics, one of the most significant health threats to women worldwide. Utilizing a piecewise mathematical framework, we incorporate both deterministic and stochastic elements of cancer progression. The model is divided into three distinct phases: (1) initial growth, characterized by a constant-order Caputo proportional operator (CPC), (2) intermediate growth, modeled by a variable-order CPC, and (3) advanced stages, capturing stochastic fluctuations in cancer cell populations using a stochastic operator.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!