AI Article Synopsis

  • This study examined how phenylephrine (PE) affects both brain and skeletal muscle microcirculation in rats using a combination of hyperspectral near-infrared spectroscopy and diffuse correlation spectroscopy.
  • Results showed that PE caused a decrease in oxygenation and blood flow in skeletal muscle while increasing cerebral oxygenation and perfusion initially, despite a later drop in brain blood flow.
  • The findings suggest that while PE induces vasoconstriction in skeletal muscles, it can redirect and enhance blood flow to the brain, indicating a complex interplay between peripheral and cerebral circulation.

Article Abstract

This study aimed to investigate the simultaneous response of the cerebral and skeletal muscle microvasculature to the same phenylephrine (PE) boluses. A hybrid optical system that combines hyperspectral near-infrared spectroscopy (hs-NIRS) and diffuse correlation spectroscopy (DCS) was used to monitor changes in tissue oxygenation and perfusion. Data were collected from the head and hind limb of seven male Sprague-Dawley rats while administering intravenous (IV) injections of PE or saline to all animals. The response to saline was used as a control. Skeletal muscle oxygenation decreased significantly after PE injection, while a statistically underpowered decrease in perfusion was observed, followed by an increase beyond baseline. Vascular conductance also decreased in the muscle reflecting the drug's vasoconstrictive effects. Tissue oxygenation and perfusion increased in the brain in response to PE. Initially, there was a sharp increase in cerebral perfusion but no changes in cerebral vascular conductance. Subsequently, cerebral flow and vascular conductance decreased significantly below baseline, likely reflecting autoregulatory mechanisms to manage the excess flow. Further, fitting an exponential function to the secondary decrease in cerebral perfusion and increase in muscular blood flow revealed a quicker kinetic response in the brain to adjust blood flow. In the skeletal muscle, PE caused a transient decrease in blood volume due to vasoconstriction, which resulted in an overall decrease in hemoglobin content and tissue oxygen saturation. Since PE does not directly affect cerebral vessels, this peripheral vasoconstriction shunted blood into the brain, resulting in an initial increase in oxygenated hemoglobin and oxygen saturation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11467741PMC
http://dx.doi.org/10.1096/fba.2024-00063DOI Listing

Publication Analysis

Top Keywords

skeletal muscle
16
vascular conductance
12
cerebral skeletal
8
tissue oxygenation
8
oxygenation perfusion
8
conductance decreased
8
cerebral perfusion
8
blood flow
8
oxygen saturation
8
cerebral
7

Similar Publications

Introduction: The purpose of this study was to evaluate the association between body composition, overall survival, odds of receiving treatment, and patient-reported outcomes (PROs) in individuals living with metastatic non-small-cell lung cancer (mNSCLC).

Methods: This retrospective analysis was conducted in newly diagnosed patients with mNSCLC who had computed-tomography (CT) scans and completed PRO questionnaires close to metastatic diagnosis date. Cox proportional hazard models and logistic regression evaluated overall survival and odds of receiving treatment, respectively.

View Article and Find Full Text PDF

Sarcopenia is defined as a muscle-wasting syndrome that occurs with accelerated aging, while cachexia is a severe wasting syndrome associated with conditions such as cancer and immunodeficiency disorders, which cannot be fully addressed through conventional nutritional supplementation. Sarcopenia can be considered a component of cachexia, with the bidirectional interplay between adipose tissue and skeletal muscle potentially serving as a molecular mechanism for both conditions. However, the underlying mechanisms differ.

View Article and Find Full Text PDF

Bone homeostasis encompasses two interrelated aspects: bone remodeling and cartilage metabolism. Disruption of bone homeostasis can lead to the development of metabolic bone diseases such as osteoporosis and osteoarthritis. The maintenance of bone homeostasis is a complex process that does not solely rely on the functions of the bone tissue itself.

View Article and Find Full Text PDF

Introduction: Skeletal muscle satellite cells (MuSCs or stem cells) play a crucial role in muscle development, maintenance, and regeneration, supporting both hypertrophy and regenerative myogenesis. Syndecans (SDCs) act as communication bridges within the muscle microenvironment, regulating interactions with extracellular matrix components and contributing significantly to tissue repair and inflammation. Specifically, syndecan-4 (SDC4) is involved in muscle regeneration at multiple stages.

View Article and Find Full Text PDF

Many of the 'hallmarks of aging' involve alterations in cellular and organismal metabolism. One pathway with the potential to impact several traditional markers of impaired function with aging is the PI3K/AKT metabolic pathway. Regulation of this pathway includes many aspects of cellular function, including protein synthesis, proliferation and survival, as well as many downstream targets, including mTOR and FOXOs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!