AI Article Synopsis

  • The study investigates the factors influencing outcomes of Ebola virus disease, focusing on differences between fatal cases and survivors compared to healthy individuals.
  • Researchers identified a significant number of differentially expressed genes (DEGs), revealing 13,198 DEGs in those who died and 12,039 in survivors, with specific hub genes linked to critical biological processes like immune response and blood coagulation.
  • The findings suggest unique genetic markers for fatal and survival outcomes, which could enhance understanding of Ebola pathogenesis and inform targeted treatment strategies for the disease.

Article Abstract

The Ebola virus poses a severe public health threat, yet understanding factors influencing disease outcomes remains incomplete. Our study aimed to identify critical pathways and hub genes associated with fatal and survivor Ebola disease outcomes. We analyzed differentially expressed hub genes (DEGs) between groups with fatal and survival outcomes, as well as a healthy control group. We conducted additional analysis to determine the functions and pathways associated with these DEGs. We found 13,198 DEGs in the fatal and 12,039 DEGs in the survival group compared to healthy controls, and 1873 DEGs in the acute fatal and survivor groups comparison. Upregulated DEGs in the comparison between the acute fatal and survivor groups were linked to ECM receptor interaction, complement and coagulation cascades, and PI3K-Akt signaling. Upregulated hub genes identified from the acute fatal and survivor comparison (FGB, C1QA, SERPINF2, PLAT, C9, SERPINE1, F3, VWF) were enriched in complement and coagulation cascades; the downregulated hub genes (IL1B, 1L17RE, XCL1, CXCL6, CCL4, CD8A, CD8B, CD3D) were associated with immune cell processes. Hub genes CCL2 and F2 were unique to fatal outcomes, while CXCL1, HIST1H4F, and IL1A were upregulated hub genes unique to survival outcomes compared to healthy controls. Our results demonstrate for the first time the association of EVD outcomes to specific hub genes and their associated pathways and biological processes. The identified hub genes and pathways could help better elucidate Ebola disease pathogenesis and contribute to the development of targeted interventions and personalized treatment for distinct EVD outcomes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11467745PMC
http://dx.doi.org/10.1096/fba.2024-00055DOI Listing

Publication Analysis

Top Keywords

hub genes
36
fatal survivor
20
acute fatal
12
hub
9
genes
9
genes pathways
8
fatal
8
outcomes
8
ebola virus
8
disease outcomes
8

Similar Publications

Crohn's disease (CD) is a chronic inflammatory bowel disease with an unknown etiology. Ubiquitination plays a significant role in the pathogenesis of CD. This study aimed to explore the functional roles of ubiquitination-related genes in CD.

View Article and Find Full Text PDF

ASIC1a mediated nucleus pulposus cells pyroptosis and glycolytic crosstalk as a molecular basis for intervertebral disc degeneration.

Inflamm Res

January 2025

Department of Orthopedics and Traumatology, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan Province, China.

Background: One of the etiologic components of degenerative spinal illnesses is intervertebral disc degeneration (IVDD), and the accompanying lower back pain is progressively turning into a significant public health problem. Important pathologic characteristics of IVDD include inflammation and acidic microenvironment, albeit it is unclear how these factors contribute to the disease.

Purpose: To clarify the functions of inflammation and the acidic environment in IVDD, identify the critical connections facilitating glycolytic crosstalk and nucleus pulposus cells (NPCs) pyroptosis, and offer novel approaches to IVDD prevention and therapy.

View Article and Find Full Text PDF

Purpose: We downloaded the gene expression profiles of patients with diabetic nephropathyfrom the GEO database and combined it with differential gene analysis of rat transcriptome,our study employed animal models to examine the role of key hub genes in diabetic nephropathy and to pinpoint significant gene regulation in this disease.

Methods: An examination of differential expression was performed using the online analysis tool GEO2R and the DN-related datasets GSE30528 and GSE1009 obtained from the GEO database. A comparison of gene expression between the normal and diabetic nephropathy groups was conducted using the RNA-seq technique.

View Article and Find Full Text PDF

Strigolactones regulate Bambusa multiplex sheath senescence by promoting chlorophyll degradation.

Tree Physiol

January 2025

State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Bamboo Research Institute, Key Lab of National Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, School of Life Sciences, Nanjing Forestry University, Nanjing 210037, China.

Culm sheaths are capable of photosynthesis and are an important class of non-leaf organs in bamboo plants. The source-sink interaction mechanism has been found to play an important role in the interaction between culm sheaths and internodes in Bambusa multiplex. Research on the regulatory mechanisms of culm sheath senescence is important for the study of internode growth, but reports in this regard are limited.

View Article and Find Full Text PDF

A number of studies demonstrate the therapeutic effectiveness of Radix Bupleuri (RB) and Hedysarum Multijugum Maxim (HMM) in treating liver fibrosis, but the exact molecular mechanisms remain unclear. This study aims to explore the mechanism of RB-HMM drug pairs in treating liver fibrosis by using network pharmacology, bioinformatics, molecular docking, molecular dynamics simulation technology and in vitro experiments. Totally, 155 intersection targets between RB-HMM and liver fibrosis were identified.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!