A new copper and electrocatalytic synergy strategy for efficiently constructing fused quinazolinones has been developed. In the presence of cupric acetate and oxygen, aryl ketones and 1,2,3,4-tetrahydroisoquinoline can smoothly participate in this transformation, thus providing a variety of substituted quinazolones in an undivided cell. The reaction shows good functional group tolerance and provides universal quinazolinones at a good yield under mild conditions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11467720 | PMC |
http://dx.doi.org/10.1039/d4ra06539e | DOI Listing |
J Colloid Interface Sci
December 2024
State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Tianjin 300401, PR China; Engineering Research Center of Ministry of Education for Intelligent Rehabilitation Device and Detection Technology, Hebei University of Technology, Tianjin 300401, PR China; Hebei Key Laboratory of Smart Sensing and Human-Robot Interaction, Hebei University of Technology, Tianjin 300401, PR China; School of Mechanical Engineering, Hebei University of Technology, 5340 Xiping Road, Beichen District, Tianjin 300401, PR China. Electronic address:
Transition-metal-loaded carbon-based electrocatalysts are promising alternatives to conventional precious metal electrocatalysts for the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) in high-performance zinc-air batteries. However, efficiently doping transition-metal single atoms onto carbon-based frameworks is a significant challenge. Herein, an improved template-sacrificing method combining a two-step carbonization process is proposed to fabricate Cu/Co diatomic sites coanchored on a three-dimensional nitrogen-doped carbon-based framework.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
December 2024
City University of Hong Kong, Department of Chemistry, Tat Chee Avenue, 000000, Kowloon, HONG KONG.
Electrocatalytic CO2 reduction (CO2R) to multi-carbon (C2+) products in strong acid presents a promising approach to mitigate the CO2 loss commonly encountered in alkaline and neutral systems. However, this process often suffers from low selectivity for C2+ products due to the competing C1 (e.g.
View Article and Find Full Text PDFRSC Adv
December 2024
State Key Laboratory of Applied Organic Chemistry, Laboratory of Special Function Materials and Structure Design of the Ministry of Education, College of Chemistry and Chemical Engineering, Lanzhou University Lanzhou 730000 China.
Metal-organic frameworks (MOFs) have been identified as promising electrocatalysts for the oxygen evolution reaction (OER). However, most of the reported MOFs have low electrical conductivity and poor stability, and therefore addressing these problems is crucial for achieving higher electrocatalytic performance. Meanwhile, direct observations of the electrocatalytic behavior, which is of great significance to the understanding of the electrocatalytic mechanism, remain highly challenging.
View Article and Find Full Text PDFInorg Chem
December 2024
Guizhou Provincial Key Laboratory of Green Chemical and Clean Energy Technology, School of Chemistry and Chemical Engineering, Guizhou University, Guiyang, Guizhou 550025, China.
The combination of the electrocatalytic glycerol oxidation reaction (GOR) with the cathodic hydrogen evolution reaction serves to reduce the anodic overpotential, thereby facilitating the efficient production of hydrogen. However, the GOR is confined to a narrow potential range due to the competition of the oxygen evolution reaction (OER) at high potential. Therefore, it is necessary to develop a catalyst with a high Faraday efficiency of formate (FE) over a wide potential range.
View Article and Find Full Text PDFInorg Chem
December 2024
Department of Chemistry, Sharif University of Technology, Tehran 11155-9516, Iran.
This study explores the influence of Fe ion incorporation on the oxygen-evolution reaction (OER) in alkaline media, utilizing CuO-based materials. Instead of developing an efficient and stable OER catalyst, this research investigates two distinct CuO variants: one with Fe ions adhered to the surface and another with Fe ions integrated into the CuO lattice. By employing a variety of analytical techniques, the study demonstrates that the CuO variant with surface-bound Fe ions (referred to as compound 1) exhibits significantly enhanced OER performance compared to the variant with internally embedded Fe ions (referred to as compound 2).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!