Decades of iteration on scientific imaging hardware and software has yielded an explosion in not only the size, complexity, and heterogeneity of image datasets but also in the tooling used to analyze this data. This wealth of image analysis tools, spanning different programming languages, frameworks, and data structures, is itself a problem for data analysts who must adapt to new technologies and integrate established routines to solve increasingly complex problems. While many "bridge" layers exist to unify pairs of popular tools, there exists a need for a general solution to unify new and existing toolkits. The SciJava Ops library presented here addresses this need through two novel principles. Algorithm implementations are declared as plugins called Ops, providing a uniform interface regardless of the toolkit they came from. Users express their needs declaratively to the Op environment, which can then find and adapt available Ops on demand. By using these principles instead of direct function calls, users can write streamlined workflows while avoiding the translation boilerplate of bridge layers. Developers can easily extend SciJava Ops to introduce new libraries and more efficient, specialized algorithm implementations, even immediately benefitting existing workflows. We provide several use cases showing both user and developer benefits, as well as benchmarking data to quantify the negligible impact on overall analysis performance. We have initially deployed SciJava Ops on the Fiji platform, however it would be suitable for integration with additional analysis platforms in the future.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11466933 | PMC |
http://dx.doi.org/10.3389/fbinf.2024.1435733 | DOI Listing |
Front Bioinform
September 2024
Center for Quantitative Cell Imaging, University of Wisconsin-Madison, Madison, WI, United States.
Decades of iteration on scientific imaging hardware and software has yielded an explosion in not only the size, complexity, and heterogeneity of image datasets but also in the tooling used to analyze this data. This wealth of image analysis tools, spanning different programming languages, frameworks, and data structures, is itself a problem for data analysts who must adapt to new technologies and integrate established routines to solve increasingly complex problems. While many "bridge" layers exist to unify pairs of popular tools, there exists a need for a general solution to unify new and existing toolkits.
View Article and Find Full Text PDFCurr Protoc
August 2021
Laboratory for Optical and Computational Instrumentation (LOCI), Center for Quantitative Cell Imaging, University of Wisconsin at Madison, Madison, Wisconsin.
ImageJ provides a framework for image processing across scientific domains while being fully open source. Over the years ImageJ has been substantially extended to support novel applications in scientific imaging as they emerge, particularly in the area of biological microscopy, with functionality made more accessible via the Fiji distribution of ImageJ. Within this software ecosystem, work has been done to extend the accessibility of ImageJ to utilize scripting, macros, and plugins in a variety of programming scenarios, e.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!