Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 143
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3098
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Severity: Warning
Message: Attempt to read property "Count" on bool
Filename: helpers/my_audit_helper.php
Line Number: 3100
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3100
Function: _error_handler
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Bayesian optimization (BO) is an efficient method for solving complex optimization problems, including those in chemical research, where it is gaining significant popularity. Although effective in guiding experimental design, BO does not account for experimentation costs: testing readily available reagents under different conditions could be more cost and time-effective than synthesizing or buying additional ones. To address this issue, we present cost-informed BO (CIBO), an approach tailored for the rational planning of chemical experimentation that prioritizes the most cost-effective experiments. Reagents are used only when their anticipated improvement in reaction performance sufficiently outweighs their costs. Our algorithm tracks available reagents, including those recently acquired, and dynamically updates their cost during the optimization. Using literature data of Pd-catalyzed reactions, we show that CIBO reduces the cost of reaction optimization by up to 90% compared to standard BO. Our approach is compatible with any type of cost, , of buying equipment or compounds, waiting time, as well as environmental or security concerns. We believe CIBO extends the possibilities of BO in chemistry and envision applications for both traditional and self-driving laboratories for experiment planning.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11465108 | PMC |
http://dx.doi.org/10.1039/d4dd00225c | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!