Conjugated linoleic acid (CLA) isomers exhibit anti-inflammatory properties within the central nervous system (CNS). This study investigated the effects of CLA isomers c9,t11 and t10,c12 on fatty acid (FA) and acylethanolamine (NAE) profiles and their association with pro-inflammatory molecule expression in BV-2 microglia cell line, the CNS's resident immune cells responsible for maintaining neuronal activity and immune homeostasis. BV-2 cells were treated with 25 μM of c9,t11-CLA, t10,c12-CLA, or oleic acid (OA) for 24 h, followed by lipopolysaccharide (LPS) stimulation. After treatment, the cell's FA and NAE profiles and pro-inflammatory molecule expression were analyzed. Our results demonstrated that CLA isomers mitigate LPS-induced morphological changes in BV-2 cells and reduce gene expression and protein levels of inflammatory markers. This effect was linked to an upregulation of acyl-CoA oxidase 1, a key enzyme in the anti-inflammatory peroxisomal beta-oxidation pathway that efficiently metabolizes CLA isomers. Notably, t10,c12-CLA significantly suppressed stearoyl-CoA desaturase 1, impacting monounsaturated fatty acid synthesis. The NAEs profile was remarkably altered by CLA isomers, with a significant release of the anti-neuroinflammatory mediator docosahexaenoic acid (DHA)-derived acylethanolamine (DHAEA). In conclusion, our findings suggest that the anti-neuroinflammatory effects of CLA isomers are due to their unique influences on FA metabolism and the modulation of bioactive FA-derived NAEs, highlighting a potential strategy for nutritional intervention in conditions characterized by neuroinflammation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11466893PMC
http://dx.doi.org/10.3389/fncel.2024.1442786DOI Listing

Publication Analysis

Top Keywords

cla isomers
24
anti-neuroinflammatory effects
8
conjugated linoleic
8
linoleic acid
8
isomers c9t11
8
c9t11 t10c12
8
effects cla
8
fatty acid
8
nae profiles
8
pro-inflammatory molecule
8

Similar Publications

Detailed DFT studies of H and C NMR chemical shifts of hydroxy secondary oxidation products of various geometric isomers of conjugated linolenic acids methyl esters are presented. Several low energy conformers were identified for model compounds of the central dienenol OH moiety, which were found to be practically independent on the various functionals and basis sets used. This greatly facilitated the minimization process of the geometric isomers of conjugated linolenic acids methyl esters.

View Article and Find Full Text PDF
Article Synopsis
  • Conjugated linoleic acid (CLA) encompasses all isomers of linoleic acid, with cis-9, trans-11 and trans-10, cis-12 being the most beneficial for health.* -
  • Regular milk and dairy products have low CLA content, so strategies are needed to boost its levels for better health outcomes.* -
  • Methods to increase CLA include dietary supplementation with PUFA-rich sources, using specific bacteria in fermentation, and genetic modifications, as reviewed in recent studies.*
View Article and Find Full Text PDF

Conjugated linoleic acid (CLA) isomers exhibit anti-inflammatory properties within the central nervous system (CNS). This study investigated the effects of CLA isomers c9,t11 and t10,c12 on fatty acid (FA) and acylethanolamine (NAE) profiles and their association with pro-inflammatory molecule expression in BV-2 microglia cell line, the CNS's resident immune cells responsible for maintaining neuronal activity and immune homeostasis. BV-2 cells were treated with 25 μM of c9,t11-CLA, t10,c12-CLA, or oleic acid (OA) for 24 h, followed by lipopolysaccharide (LPS) stimulation.

View Article and Find Full Text PDF

Dietary supplementation of fat can be an important source of energy to compensate for the reduction in dry matter intake in dairy cows during heat stress periods. Studies have reported that supplementing dairy cow diets with linseed oil (LO) can increase milk yield and enhance the levels of beneficial fatty acids, such as omega-3 fatty acids, in the milk. The objective of this research was to evaluate the effect of LO supplementation on milk fatty acids profile, milk yield and composition, and physiological parameters of grazing cows.

View Article and Find Full Text PDF

Conjugated linoleic acid (CLA) is a class of bioactive fatty acids that exhibit various physiological activities such as anti-cancer, anti-atherosclerosis, and lipid-lowering. It is an essential fatty acid that cannot be synthesized by the human body and must be derived from dietary sources. The natural sources of CLA are limited, predominantly relying on chemical and enzymatic syntheses methods.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!