AI Article Synopsis

  • * The article discusses applications of these estimates and their communication, highlighting lessons learned about technical infrastructure and stakeholder engagement.
  • * VIMC emphasizes the importance of robust estimates to complement surveillance efforts while identifying data gaps and proposes strategies for improving impact assessment in its second phase.

Article Abstract

Estimates of the global health impact of immunisation are important for quantifying historical benefits as well as planning future investments and strategy. The Vaccine Impact Modelling Consortium (VIMC) was established in 2016 to provide reliable estimates of the health impact of immunisation. In this article we examine the consortium in its first five-year phase. We detail how vaccine impact was defined and the methods used to estimate it as well as the technical infrastructure required to underpin robust reproducibility of the outputs. We highlight some of the applications of estimates to date, how these were communicated and what their effect were. Finally, we explore some of the lessons learnt and remaining challenges for estimating the impact of vaccines and forming effective modelling consortia then discuss how this may be addressed in the second phase of VIMC. Modelled estimates are not a replacement for surveillance; however, they can examine theoretical counterfactuals and highlight data gaps to complement other activities. VIMC has implemented strategies to produce robust, standardised estimates of immunisation impact. But through the first phase of the consortium, critical lessons have been learnt both on the technical infrastructure and the effective engagement with modellers and stakeholders. To be successful, a productive dialogue with estimate consumers, producers and stakeholders needs to be underpinned by a rigorous and transparent analytical framework as well as an approach for building expertise in the short and long term.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11467163PMC
http://dx.doi.org/10.12688/gatesopenres.15556.1DOI Listing

Publication Analysis

Top Keywords

vaccine impact
12
estimating impact
8
impact modelling
8
modelling consortium
8
health impact
8
impact immunisation
8
technical infrastructure
8
lessons learnt
8
impact
7
estimates
5

Similar Publications

Infectious bronchitis virus (IBV) is a pathogen causing respiratory, renal and reproductive clinical forms in chickens of all ages and productive categories. Its proneness to mutation and recombination gave rise to a plethora of variants differing in terms of pathogenicity, antigenicity, and distribution, with relevant implications for disease control, mainly pursued by routine vaccination, and diagnosis, requiring a steady update of molecular and serological methods. Among the most recent additions to the current phylogenetic classification, based on S1 gene sequencing, is the discovery of an eighth genotype (GVIII), further divided into lineages GVIII-1 and GVIII-2.

View Article and Find Full Text PDF

Introduction: Malaria remains a significant burden, and a fully protective vaccine against is critical for reducing morbidity and mortality. Antibody responses against the blood-stage antigen Merozoite Surface Protein 2 (MSP2) are associated with protection from malaria, but its extensive polymorphism is a barrier to its development as a vaccine candidate. New tools, such as long-read sequencing and accurate protein structure modelling allow us to study the genetic diversity and immune responses towards antigens from clinical isolates with unprecedented detail.

View Article and Find Full Text PDF

Editorial: Cross-reactive immunity and COVID-19.

Front Immunol

December 2024

Dpto de Immunologia, Facultad de Medicina, U. Complutense de Madrid, Madrid, Spain.

View Article and Find Full Text PDF

Editorial: Systems immunology to advance vaccine development.

Front Immunol

December 2024

Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil.

View Article and Find Full Text PDF

Epidemiological, molecular, and evolutionary characteristics of G1P[8] rotavirus in China on the eve of RotaTeq application.

Front Cell Infect Microbiol

December 2024

National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID), National Health Commission Key Laboratory for Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China.

Introduction: This study, conducted in China prior to RotaTeq's launch, examined the epidemiological, molecular, and evolutionary features of the G1P[8] genotype RVA in children admitted with diarrhea, to aid in evaluating its efficacy and impact on G1P[8] RVA in China.

Methods: Data from the Chinese viral diarrhea surveillance network were collected from January 2016 to December 2018. RVA strains identified as the G1P[8] genotype were subjected to whole-genome sequencing.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: