Objective: Real-time cone-beam computed tomography (CBCT) provides instantaneous visualization of patient anatomy for image guidance, motion tracking, and online treatment adaptation in radiotherapy. While many real-time imaging and motion tracking methods leveraged patient-specific prior information to alleviate under-sampling challenges and meet the temporal constraint (< 500 ms), the prior information can be outdated and introduce biases, thus compromising the imaging and motion tracking accuracy. To address this challenge, we developed a framework (DREME) for real-time CBCT imaging and motion estimation, without relying on patient-specific prior knowledge.

Approach: DREME incorporates a deep learning-based real-time CBCT imaging and motion estimation method into a dynamic CBCT reconstruction framework. The reconstruction framework reconstructs a dynamic sequence of CBCTs in a data-driven manner from a standard pre-treatment scan, without utilizing patient-specific knowledge. Meanwhile, a convolutional neural network-based motion encoder is jointly trained during the reconstruction to learn motion-related features relevant for real-time motion estimation, based on a single arbitrarily-angled x-ray projection. DREME was tested on digital phantom simulation and real patient studies.

Main Results: DREME accurately solved 3D respiration-induced anatomic motion in real time (~1.5 ms inference time for each x-ray projection). In the digital phantom study, it achieved an average lung tumor center-of-mass localization error of 1.2±0.9 mm (Mean±SD). In the patient study, it achieved a real-time tumor localization accuracy of 1.8±1.6 mm in the projection domain.

Significance: DREME achieves CBCT and volumetric motion estimation in real time from a single x-ray projection at arbitrary angles, paving the way for future clinical applications in intra-fractional motion management. In addition, it can be used for dose tracking and treatment assessment, when combined with real-time dose calculation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11469417PMC

Publication Analysis

Top Keywords

imaging motion
20
motion estimation
20
motion tracking
16
x-ray projection
16
real-time cbct
12
cbct imaging
12
motion
12
real-time
8
single arbitrarily-angled
8
arbitrarily-angled x-ray
8

Similar Publications

Variations in the development of carpal bones are uncommon, with the scaphoid bone typically forming from the fusion of the os centrale carpi and the radial chondrification center during embryogenesis. A bipartite scaphoid is a rare congenital disorder that occurs when these ossification centers fail to fuse, with a prevalence ranging from 0.1% to 0.

View Article and Find Full Text PDF

Whole-body PET imaging is often hindered by respiratory motion during acquisition, causing significant degradation in the quality of reconstructed activity images. An additional challenge in PET/CT imaging arises from the respiratory phase mismatch between CT-based attenuation correction and PET acquisition, leading to attenuation artifacts. To address these issues, we propose two new, purely data-driven methods for the joint estimation of activity, attenuation, and motion in respiratory self-gated TOF PET.

View Article and Find Full Text PDF

Purpose: The long scan times of quantitative MRI techniques make motion artifacts more likely. For MR-Fingerprinting-like approaches, this problem can be addressed with self-navigated retrospective motion correction based on reconstructions in a singular value decomposition (SVD) subspace. However, the SVD promotes high signal intensity in all tissues, which limits the contrast between tissue types and ultimately reduces the accuracy of registration.

View Article and Find Full Text PDF

Purpose: Reliable image quality assessment is crucial for evaluating new motion correction methods for magnetic resonance imaging. In this work, we compare the performance of commonly used reference-based and reference-free image quality metrics on a unique dataset with real motion artifacts. We further analyze the image quality metrics' robustness to typical pre-processing techniques.

View Article and Find Full Text PDF

Posterior sternoclavicular joint (SCJ) dislocation is a rare but potentially life-threatening injury due to its proximity to critical mediastinal structures. Early diagnosis and prompt management are essential to prevent severe complications such as vascular or respiratory compromise. We report a case of a 23-year-old male who presented to our emergency department five days after a high-energy motor vehicle accident with isolated, closed posterior dislocation of the SCJ.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!