Comprehensive Assessment and Optimization of a Middle-Arch Dual-Channel Municipal Solid Waste Incinerator Using Numerical Simulation Methods.

ACS Omega

Institute of Thermal Energy Engineering, School of Mechanical Engineering, Shanghai Jiao Tong University, Minhang District, Shanghai 200240, China.

Published: October 2024

The present study focuses on a middle-arch dual-channel municipal solid waste (MSW) incinerator facing issues of high NO emission and overheating. To address these problems and optimize the incinerator, an advanced numerical simulation method was employed to comprehensively assess its bed combustion, freeboard combustion, and NO emission characteristics. A multiphase fuel bed model considering large-particle characteristics of MSW was developed, coupled with a three-dimensional (3D) model for combustion in freeboard. The analysis revealed that the observed issues stem from multiple factors, including primary-to-secondary air ratio, flame propagation in bed, release of volatiles from bed, and distribution and mixing of components in freeboard. Reducing the proportion of primary air and correspondingly increasing secondary air effectively alleviated the localized overheating in the furnace and reduced NO emission. Further adjustments to the distribution of primary air in three stages delaying air supply toward the burnout stage, together with the decrease in the grate movement speed, can better control the amount and speciation of N released from the bed. Implementing a counterflow mixing strategy with NH in the front channel and NO in the rear channel can greatly reduce the original NO emission concentration to 95.94 mg/(N·m), as predicted by a numerical simulation. Subsequent practical adjustments to an actual incinerator led to notable improvements, clearly optimizing the localized high-temperature issues at various locations, especially the front channel suffering severe slagging problems, with the temperature reduced from 1118 to 957 °C. Meanwhile, NO emission concentration decreased from 200 mg/(N·m) to around 50 mg/(N·m), with no negative effect on the boiler load.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11465502PMC
http://dx.doi.org/10.1021/acsomega.4c07041DOI Listing

Publication Analysis

Top Keywords

numerical simulation
12
middle-arch dual-channel
8
dual-channel municipal
8
municipal solid
8
solid waste
8
combustion freeboard
8
primary air
8
front channel
8
emission concentration
8
emission
5

Similar Publications

Simultaneous multislice diffusion imaging using navigator-free multishot spiral acquisitions.

Magn Reson Med

January 2025

Center for Biomedical Imaging Research, School of Biomedical Engineering, Tsinghua University, Beijing, China.

Purpose: This work aims to raise a novel design for navigator-free multiband (MB) multishot uniform-density spiral (UDS) acquisition and reconstruction, and to demonstrate its utility for high-efficiency, high-resolution diffusion imaging.

Theory And Methods: Our design focuses on the acquisition and reconstruction of navigator-free MB multishot UDS diffusion imaging. For acquisition, radiofrequency-pulse encoding was used to achieve controlled aliasing in parallel imaging in MB imaging.

View Article and Find Full Text PDF

In this study, we introduce a coupled fractional system consisting of two fluctuating-mass oscillators with time delay and investigate their collective resonant behaviors. First, we achieve complete synchronization between the average behaviors of these oscillators. We then derive the exact analytical expression for the output amplitude gain, and based on this, we observe generalized stochastic resonance (GSR) in the system.

View Article and Find Full Text PDF

Because coal seam mining with high geostress and high gas pressure is prone to coal-rock-gas compound dynamic disasters, a disaster energy equation considering the influence of roof elastic energy is established, and a disaster energy criterion considering the influence of roof elastic energy is derived and introduced into COMSOL software to conduct numerical simulations of coal seam mining under different geostress and gas pressures. The study revealed that the increase of ground stress reduces the gas pressure required for disaster occurrence. When the gas pressure reaches a certain value, the disaster will occur even if the ground stress is very small.

View Article and Find Full Text PDF

Caving mining in extra-thick coal seams induces large-scale overburden movement, leading to more intense fracture processes in key strata, more significant surface subsidence, and frequent dynamic disasters in mines. This study, using the N34-2 caving face of the 17th coal seam at Junde Mine as a case study, aims to investigate the time-varying linkage mechanism between surface subsidence, microseismic characteristics, and fracture scales of the overburden's key strata under such mining conditions. Based on Timoshenko's theory, a bearing fracture mode for the overburden's key strata is proposed, and corresponding fracture criteria are established.

View Article and Find Full Text PDF

Worldwide amphibian decline and extinction have been observed, highlighting the importance of identifying the underlying factors. This issue has long been recognized as highly significant and continues to receive substantial attention in conservation ecology. Pathogen infection, in particular the chytrid fungus Batrachochytrium dendrobatidis, is postulated as a key factor contributing to the decline of certain species within specific regions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!