Integrated Pest Management (IPM) emerged as a pest control framework promoting sustainable intensification of agriculture, by adopting a combined strategy to reduce reliance on chemical pesticides while improving crop productivity and ecosystem health. This critical review synthesizes the most recent advances in IPM research and practice, mostly focusing on studies published within the past five years. The Review discusses the key components of IPM, including cultural practices, biological control, genetic pest control, and targeted pesticide application, with a particular emphasis on the significant advancements made in biological control and targeted pesticide delivery systems. Recent findings highlight the growing importance of genetic control and conservation biological control, which involves the management of agricultural landscapes to promote natural enemy populations. Furthermore, the recent discovery of novel biopesticides, including microbial agents and plant-derived compounds, has expanded the arsenal of tools available for eco-friendly pest management. Substantial progress has recently also been made in the development of targeted pesticide delivery systems, such as nanoemulsions and controlled-release formulations, which can minimize the environmental impact of pesticides while maintaining their efficacy. The Review also analyzes the environmental, economic, and social dimensions of IPM adoption, showcasing its potential to promote biodiversity conservation and ensure food safety. Case studies from various agroecological contexts demonstrate the successful implementation of IPM programs, highlighting the importance of participatory approaches and effective knowledge exchange among stakeholders. The Review also identifies the main challenges and opportunities for the widespread adoption of IPM, including the need for transdisciplinary research, capacity building, and policy support. In conclusion, this critical review discusses the essential role of IPM components in achieving the sustainable intensification of agriculture, as it seeks to optimize crop production while minimizing adverse environmental impacts and enhancing the resilience of agricultural systems to global challenges such as climate change and biodiversity loss.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11465254 | PMC |
http://dx.doi.org/10.1021/acsomega.4c06628 | DOI Listing |
Phytopathology
January 2025
Guizhou University, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Huaxi District, Guiyang, Guizhou Province of China, Guiyang, China, 550025;
Gray mold is an important disease of crops and is widespread, harmful, difficult to control, and prone to developing fungicide resistance. Screening new fungicides is an important step in controlling this disease. Hydroxychloroquine is an anti-inflammatory and anti-malarial agent, which has shown marked inhibitory activity against many fungi in medicine.
View Article and Find Full Text PDFExp Appl Acarol
January 2025
CBGP, Institut Agro Montpellier, INRAE, CIRAD, IRD, Univ. Montpellier, Montpellier, France.
Typhlodromus (Anthoseius) recki feeds on pest mites on tomato plants and its introduction into crops via companion plants, Mentha suaveolens and Phlomis fruticosa, has been recently investigated. This study aims at assessing the predator arrestment behavior, through lab choice tests to determine the effects of (i) prey (Aculops lycopersici and Tetranychus urticae) vs Typha angustifolia pollen deposited on companion plant or Solanum nigrum, (ii) T. urticae vs A.
View Article and Find Full Text PDFPest Manag Sci
January 2025
College of Plant Protection, Shanxi Agricultural University, Taigu, China.
Background: As sex pheromones are environmentally friendly and specific, they are often used to monitor and control oriental fruit moths (OFMs). Currently, non-biodegradable polymers are commonly employed as carriers to prepare controlled sex pheromone release systems for plant protection. Electrospinning is a relatively simple technique for preparing biodegradable nanofibers that allows for the controlled release of sex pheromones.
View Article and Find Full Text PDFJ Agric Food Chem
January 2025
Fujian Engineering Research Center for Green Pest Management/Fujian Key Laboratory for Monitoring and Integrated Management of Crop Pests/East China Branch of the National Center for Agricultural Biosafety Sciences, Institute of Plant Protection, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China.
Azole and benzimidazole fungicides are widely used agrochemicals to prevent and treat fungal growth and are frequently detected in aquatic environments. Here, we aimed to assess the aquatic ecological risks of ten currently used azole and benzimidazole fungicides, which with the aryl hydrocarbon receptor (AhR) agonistic activity, and their transformation products (TPs). We obtained over 400 types of aerobic TPs for ten fungicides.
View Article and Find Full Text PDFAnn Entomol Soc Am
January 2025
Department of Entomology, Michigan State University, East Lansing, MI, USA.
(Matsumura) (Diptera: Drosophilidae) is a global invasive pest attacking soft-skinned fruit. The specialist larval parasitoid wasp, (Ihering), was recently approved in Europe and the United States for classical biological control releases against . Rearing methods are essential for supporting innundative releases but current methods using fresh fruit are costly and susceptible to variation in host quality.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!