A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Performance and reinforcement of air-cooled embankments traversing degrading permafrost of the Qinghai-Tibet Plateau. | LitMetric

Performance and reinforcement of air-cooled embankments traversing degrading permafrost of the Qinghai-Tibet Plateau.

Heliyon

Key Laboratory of Cryospheric Science and Frozen Soil Engineering, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China.

Published: October 2024

The reliable operation of railway embankments traversing degrading permafrost regions is challenged by climate warming. This study examines performances of four main types of railway embankments on the Qinghai-Tibet Plateau in thermally stabilizing permafrost foundation over warm permafrost using numerical modelling and 10-year monitoring data. Then, a reinforcement measure that combines a thermal conductivity variable system (TCVS) was designed to improve the cooling capacity of the crushed-rock sloped embankment (CRSE) by countering the heat absorption of slopes during summers. A coupled thermal-fluid-solid model was built to simulate and assess the cooling performance and reinforcing capacity of the new design. Results show that the crushed-rock embankments can produce convection cooling on the permafrost subgrade but the performances vary with different structures. The CRSE has insufficient cooling capacity to withstand the underlying permafrost degradation in warm permafrost regions. The optimized CRSE that combines the TCVS can effectively cool the underlying warm permafrost and decrease the shady-sunny slope effect under a warming climate, and can be used as an effective reinforcement measure. This study confirms the application of air-cooled embankments in protecting permafrost subgrade and provides guidance for structural design of embankment traversing degrading permafrost.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11471204PMC
http://dx.doi.org/10.1016/j.heliyon.2024.e38304DOI Listing

Publication Analysis

Top Keywords

traversing degrading
12
degrading permafrost
12
warm permafrost
12
permafrost
10
air-cooled embankments
8
embankments traversing
8
qinghai-tibet plateau
8
railway embankments
8
permafrost regions
8
reinforcement measure
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!