Unlabelled: Gamma oryzanol (GO) is the rice bioactive compound which presents various therapeutic effects. However, GO is relatively unstable to environmental factors during processing and storage. The objective of this work was to produce GO microparticles encapsulated with inulin and Tween80 (GOINs) by spray-drying. Response surface analysis was used for the optimization of the encapsulation to get maximum % encapsulation efficiency (%EE) of GO. Three process variables for the concentration of 10-20% inulin (w/v), 3-5% Tween 80 (w/v), and 3-5% GO (w/v) were investigated. Quadratic polynomial regression model for the optimization with R at 0.92 was obtained from the study The optimum condition was 20% inulin (w/v), 3% Tween 80 (w/v), and 3% GO (w/v) which yielded a high % EE of 82.63% and particles size at 1,154.60 ± 28.85 nm Fourier transform infrared spectroscopy demonstrated that GO was encapsulated inside the inulin matrix. Our study provided potential and improved hygroscopicity ranged from 6.51 to 10.22 g HO/100 g dry weight of GO in spray-dried microcapsules.

Supplementary Information: The online version contains supplementary material available at 10.1007/s13197-024-05988-0.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11464926PMC
http://dx.doi.org/10.1007/s13197-024-05988-0DOI Listing

Publication Analysis

Top Keywords

gamma oryzanol
8
inulin w/v
8
w/v 3-5%
8
tween w/v
8
w/v
6
inulin
5
microencapsulation gamma
4
oryzanol inulin
4
inulin wall
4
wall material
4

Similar Publications

Insights into the oil-water interfacial adsorption properties of whey protein-γ-oryzanol Pickering emulsion gel during in vitro simulated digestion.

Food Chem

December 2024

Key Laboratory of Dairy Science (Northeast Agricultural University), Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China; College of Food Science and Engineering, Guiyang University, Guiyang 550005, China. Electronic address:

This work elucidated the digestion behavior of low-oil phase Pickering emulsion gel (LOPPEG) stabilized by whey protein isolate (WPI) -γ-Oryzanol (γO) aggregated particles and interfacial adsorption properties of its simulated digestion products. Initially, following simulated digestion, WPI-γO LOPPEG exhibited lower free fatty acid release and protein digestibility compared to WPI LOPPEG. WPI-γO LOPPEG maintained lower interfacial tension and higher interfacial thickness than WPI LOPPEG.

View Article and Find Full Text PDF

Background: The process of maturing ovine oocyte in vitro has not yet been raised with acceptable results.

Objective: This study was designed to evaluate the γ-oryzanol effect as a supplement of maturation media on the development of ovine oocytes to blastocyst.

Methods: Aspirated from ovine ovaries, morphologically normal cumulus-oocyte complexes (COCs) were matured in media supplemented with or without 5 µM γ-oryzanol.

View Article and Find Full Text PDF

Effect of different oleogelators on physicochemical properties, oxidative stability and astaxanthin delivery of macadamia oil-based oleogels.

Food Res Int

November 2024

South Subtropical Crop Research Institute, China Academy of Tropical Agricultural Sciences, Key Laboratory of Tropical Fruit Biology, Ministry of Agriculture & Rural Affairs, Key Laboratory of Hainan Province for Postharvest Physiology and Technology of Tropical Horticultural Products, Zhanjiang, 524091, China. Electronic address:

Oleogels can be formed using different types of oleogelator, which lead to different end properties. In this study, four kinds of oleogelators, rice bran wax (RBW), monoglyceride stearate (MG), beeswax (BW), and a mixture of β-sitosterol and γ-oryzanol (SO) were used to prepare astaxanthin-loaded macadamia oil-based oleogels. Fourier transform infrared spectroscopy, polarized light microscopy, X-ray diffraction, differential scanning calorimetry, and dynamic shear rheometry were then used to evaluate the effects of the different oleogelators and astaxanthin on the physicochemical properties of the oleogels.

View Article and Find Full Text PDF

Cell-free and cell-based antidiabetic effects and chemical characterization of rice bran from Thai cultivars.

Food Res Int

November 2024

REQUIMTE/LAQV, Laboratório de Farmacognosia, Departamento de Química, Faculdade de Farmácia, Universidade do Porto, R. Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal. Electronic address:

Rice bran is a valuable by-product of rice milling, prized for its nutritional value and health benefits. This study investigates the antidiabetic properties of rice bran from fifteen commercially available Thai rice cultivars (six brown, four red and five purple). Bran samples were initially screened on their antioxidant potential and ability to inhibit α-glucosidase, as well as on γ-oryzanol levels, total phenolic and total flavonoid contents.

View Article and Find Full Text PDF

In grass cell walls, ferulic acid (FA) serves as an important cross-linker between cell wall polymers, such as arabinoxylan (AX) and lignin, affecting the physicochemical properties of the cell walls as well as the utilization properties of grass lignocellulose for biorefinering. Here, we demonstrate that hydroxycinnamaldehyde dehydrogenase (HCALDH) plays a crucial role in the biosynthesis of the FA used for cell wall feruloylation in rice (Oryza sativa). Bioinformatic and gene expression analyses of aldehyde dehydrogenases (ALDHs) identified two rice ALDH subfamily 2C members, OsHCALDH2 (OsALDH2C2) and OsHCALDH3 (OsALDH2C3), potentially involved in cell wall feruloylation in major vegetative tissues of rice.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!