Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Introduction: Moderate vitamin A levels during pregnancy are strongly related to normal embryonic development in both animal models and population studies. Abnormal development of urinary tract system is linked to either an excess or a shortage of vitamin A. The relationships among maternal vitamin A deficiency prior to conception, moderate vitamin A supplementation during pregnancy, and abnormal urinary system development in offspring are unclear.
Methods: By creating preconception and preconception + pregnancy vitamin A insufficiency mouse models, we investigated whether moderate vitamin A treatment during pregnancy may reduce the prevalence of CAKUT and increase distant vitamin A levels in offspring, as well as any potential pathways involved.
Results: We effectively established a prepregnancy vitamin A-deficient mouse model by providing a particular diet with or without vitamin A for 4 weeks. The offspring of the hypovitaminosis A model group presented a greater proportion of neonatal urinary tract developmental malformations. Abnormalities in ureteral bud emergence and key molecules during renal development, such as p-Plcγ and Ret, may be the primary causes of offspring development of CAKUT as a result of mothers' hypovitaminosis A. Normal vitamin A diets, on the other hand, may help mitigate the teratogenic consequences of prepregnancy hypovitaminosis A, as well as defects produced by ureteral budding and major molecular changes.
Conclusion: In contrast, the administration of normal vitamin A feeds during pregnancy may ameliorate the teratogenic effects of prepregnancy hypovitaminosis A to a certain extent and may also ameliorate the abnormalities associated with ureteral budding and key molecular changes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1159/000541289 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!