This study investigates the photocatalytic degradation of Procion Red MX-5B (PRM) using ZnO and Ni-doped ZnO catalysts derived from okra stalks through a green synthesis method. Various parameters, including hydrogen peroxide concentration (HPC), catalyst amount, nickel (Ni) doping amount, initial PRM concentration, and pH, are systematically studied to assess their impact on PRM degradation efficiency. The results reveal that both ZnO and Ni-doped ZnO catalysts exhibit promising photocatalytic activity, with the highest PRM degradation efficiency achieved at the following reaction conditions: 6 mM of HPC, 40 mg of Ni(7%):ZnO catalyst, 10 ppm initial PRM concentration, and pH = 6. Under these conditions, the Ni-doped ZnO catalyst demonstrated a degradation efficiency of 98.08% compared to 82.99% for the ZnO catalyst. The study highlights the potential of these catalysts for efficient organic pollutant removal and provides valuable insights into the factors influencing their photocatalytic performance.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/15226514.2024.2411248 | DOI Listing |
Bioelectrochemistry
January 2025
Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Santo André, São Paulo 09210-580, Brazil. Electronic address:
Owing to fast SARS-CoV-2 mutations, biosensors employing antibodies as biorecognition elements have presented problems with sensitivity and accuracy. To face these challenges, antibodies can be replaced with the human angiotensin converting enzyme 2 (ACE-2), where it has been shown that the affinity between ACE-2 and the receptor binding domain (RBD) increases with the emergence of new variants. Herein, we report on Ni-doped ZnO nanorod electrochemical biosensors employing an ACE-2 peptide (IEEQAKTFLDKFNHEAEDLFYQS-NH) as a biorecognition element for detecting Spike (S) Wild-Type (WT) protein.
View Article and Find Full Text PDFInt J Phytoremediation
October 2024
Department of Chemical Engineering, Faculty of Engineering, Sivas University of Science and Technology, Sivas, Turkey.
Sci Rep
September 2024
Department of Physics, Faculty of Sciences, International Islamic University, Islamabad, Pakistan.
Water scarcity and pollution has increased the need for innovative and effective waste water treatment methods. The presented study aims to tackle this difficulty by synthesizing zinc oxide (ZnO) and nickel (Ni) doped ZnO to improve their photo catalytic capacity. This study examines wastewater treatment and organic pollutant breakdown using nanotechnology.
View Article and Find Full Text PDFMicrosc Res Tech
November 2024
Department of Electrical and Electronics Engineering, Faculty of Engineering and Architecture, Kastamonu University, Kastamonu, Turkey.
This study examined the influence of growth temperature and dopant concentration on the properties of Gd- and Ni-doped zinc oxide nanorods (ZnO NRs). ZnO seed layers were deposited on glass substrates using a sol-gel and dip-coating approach. Gd- and Ni-doped ZnO NRs were hydrothermally grown on the seed layers at different temperatures such as 75, 90, and 105°C for a constant growth time of 5 h.
View Article and Find Full Text PDFIn this work, an efficient and sensitive electrochemical sensor for the determination of ciprofloxacin (CIP) is reported. The sensor was prepared by using a carbon paste electrode (CPE) modified with a combination of bimetallic copper/cerium-based metal organic framework (Cu/Ce-MOF) and nickel doped zinc oxide nanoparticles (NZP). The modifiers were characterized by Brunauer-Emmett-Teller (BET) analysis, Fourier-transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), and elemental mapping analysis (EDS).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!