The and investigations on the α-amylase inhibitor derived from (Poir.) Goyder leaf extract.

Nat Prod Res

Department of Microbiology, Centre for Infectious Diseases, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University (Deemed to be University), Chennai, India.

Published: October 2024

An attempt has been made to assess the α-amylase inhibitory activity of a phytochemical compound extracted and purified from the leaf extract of . The total yield of the crude leaf extract was 11.42% and among the different solvents involved in this study, hexane and ethyl acetate at 7:3 was effective in the separation of phytochemical compounds. Hexane and ethyl acetate at 25:75% ratios (elution S4) were found greater in inhibiting α-amylase enzyme (83%). The most abundant compound found was Phytol (3,7,11,15-tetramethyl-2-hexadecen-1-ol) and its derivatives. It resulted that the binding energy for acarbose and phytol were -8.1 kcal/mol and -5.9 kcal/mol respectively. However, the binding affinity was greater in the case of acarbose than phytol and the binding sites are different for both the ligands. Therefore, this study adds scientific evidence of the α-amylase inhibitory activity of phytol derived from the leaf extract of .

Download full-text PDF

Source
http://dx.doi.org/10.1080/14786419.2024.2413036DOI Listing

Publication Analysis

Top Keywords

leaf extract
16
α-amylase inhibitory
8
inhibitory activity
8
hexane ethyl
8
ethyl acetate
8
acarbose phytol
8
investigations α-amylase
4
α-amylase inhibitor
4
inhibitor derived
4
derived poir
4

Similar Publications

α-Terpineol and 1,8-cineole are two important compounds in essential oils. This study developed an efficient method to recover α-terpineol from model oil (MO) based on association extraction by in situ formations of deep eutectic solvent (DES) between α-terpineol and some quaternary ammonium salts (QASs) by hydrogen-bond (HB) interaction. Such interaction could be broken almost completely by the introduction of water, due to the stronger HB interaction between water and QASs, which could release α-terpineol by liquid-liquid separation and save the organic solvents consumption.

View Article and Find Full Text PDF

Wheat viruses are major yield-reducing factors, with mixed infections causing substantial economic losses. Determining field virus populations is crucial for effective management and developing virus-resistant cultivars. This study utilized the high-throughput Oxford Nanopore sequencing technique (ONT) to characterize wheat viral populations in major wheat-growing counties of Kansas from 2019 to 2021.

View Article and Find Full Text PDF

: , or star fruit, is a shrub known for its medicinal properties, especially due to bioactive metabolites identified in its roots and fruit with anti-cancer activity. However, the biological effects of its leaves remain unexplored. This study aimed to assess the effects of ethanolic extract from leaves on triple-negative breast cancer (TNBC), an aggressive subtype lacking specific therapy.

View Article and Find Full Text PDF

As the demand for sustainable and innovative solutions in food packaging continues to grow, this study endeavors to introduce a comprehensive exploration of novel active materials. Specifically, we focus on characterizing polylactide-poly(ethylene glycol) (PLA/PEG) films filled with olive leaf extract (OLE; ) obtained via solvent evaporation. Examined properties include surface structure, thermal degradation and mechanical attributes, as well as antibacterial activity.

View Article and Find Full Text PDF

Unveiling the Phytochemical Diversity and Bioactivity of : A First Report Integrating Experimental and In Silico Approaches.

Pharmaceuticals (Basel)

January 2025

Department of Molecular Biology and Genetics, Faculty of Science, Kilis 7 Aralik University, 79000 Kilis, Türkiye.

: The genus is renowned for its diverse bioactive potential, yet the chemical composition and biological properties of remain inadequately explored. This study aimed to investigate the chemical profile, antioxidant capacity, and enzyme inhibitory activities of methanol extracts from various plant parts of . : Methanol extracts were obtained from leaves, stems, flowers, roots, and aerial portions of .

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!