Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
This research focuses on modeling CO absorption into alkanolamine solvents using multilayer perceptron (MLP), radial basis function network (RBF), Support Vector Machine (SVM), networks, and response surface methodology (RSM). The parameters, including solvent density, mass fraction, temperature, liquid phase equilibrium constant, CO loading, and partial pressure of CO, were used as input factors in the models. In addition, the value of CO mass flux was considered as output in the models. Trainlm, trainbr, and trainscg algorithms trained the networks. The results showed that the best number of neurons for MLP with one layer is 16; with two layers, 5 neurons in the first layer and 12 neurons in the second layer; and with three layers, 9 neurons in the first layer, 5 neurons in the second layer, and 1 neuron in the third layer. The best spread in RBF was found to be 2.202 for optimal network performance. Furthermore, statistical data analysis revealed that the trainlm function performs best. The coefficients of determination for RSM, MLP, RBF, and SVM for optimized structures are obtained at 0.9802, 0.9996, 0.9940, and 0.8946, respectively. The results demonstrate that MLP and RBF networks can model CO absorption using the trainlm, trainbr, and trainscg algorithms.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11471865 | PMC |
http://dx.doi.org/10.1038/s41598-024-74842-2 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!