Predicting chemotherapy-induced thrombotoxicity by NARX neural networks and transfer learning.

J Cancer Res Clin Oncol

Institute for Medical Informatics, Statistics and Epidemiology (IMISE), Leipzig University, Leipzig, Germany.

Published: October 2024

AI Article Synopsis

  • Thrombocytopenia, a drop in platelet count, is a common issue with chemotherapy that can limit treatment dosages, making accurate risk prediction crucial for patient safety.
  • The study utilizes non-linear auto-regressive networks with exogenous inputs (NARX), specifically feed-forward networks and gated recurrent units, combined with transfer learning to enhance predictions from sparse patient data in high-grade non-Hodgkin's lymphoma cases.
  • The best-performing model is the NARX with GRU, which significantly improves prediction accuracy for patients with irregular platelet dynamics, recommending at least three measurements per treatment cycle for optimal results.

Article Abstract

Background: Thrombocytopenia is a common side effect of cytotoxic chemotherapies, which is often dose-limiting. Predicting an individual's risk is of high clinical importance, as otherwise, a small subgroup of patients limits dosages for the overall population for safety reasons.

Methods: We aim to predict individual platelet dynamics using non-linear auto-regressive networks with exogenous inputs (NARX). We consider different architectures of the NARX networks, namely feed-forward networks (FNN) and gated recurrent units (GRU). To cope with the relative sparsity of individual patient data, we employ transfer learning (TL) approaches based on a semi-mechanistic model of hematotoxicity. We use a large data set of patients with high-grade non-Hodgkin's lymphoma to learn the respective models on an individual scale and to compare prediction performances with that of the semi-mechanistic model.

Results: Of the examined network models, the NARX with GRU architecture performs best. In comparison to the semi-mechanistic model, the network model can result in a substantial improvement of prediction accuracy for patients with irregular dynamics, given well-spaced measurements. TL improves individual prediction performances.

Conclusion: NARX networks can be utilized to predict an individual's thrombotoxic response to cytotoxic chemotherapy treatment. For reasonable model learning, we recommend at least three well-spaced measurements per cycle: at baseline, during the nadir phase and during the recovery phase. We aim at generalizing our approach to other treatment scenarios and blood lineages in the future.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11471701PMC
http://dx.doi.org/10.1007/s00432-024-05985-yDOI Listing

Publication Analysis

Top Keywords

transfer learning
8
narx networks
8
semi-mechanistic model
8
well-spaced measurements
8
narx
5
networks
5
predicting chemotherapy-induced
4
chemotherapy-induced thrombotoxicity
4
thrombotoxicity narx
4
narx neural
4

Similar Publications

Background: Recent studies suggest a connection between immunoglobulin light chains (IgLCs) and coronary heart disease (CHD). However, current diagnostic methods using peripheral blood IgLCs levels or subtype ratios show limited accuracy for CHD, lacking comprehensive assessment and posing challenges in early detection and precise disease severity evaluation. We aim to develop and validate a Coronary Health Index (CHI) incorporating total IgLCs levels and their distribution.

View Article and Find Full Text PDF

Comprehensive analysis of scRNA-seq and bulk RNA-seq reveals the non-cardiomyocytes heterogeneity and novel cell populations in dilated cardiomyopathy.

J Transl Med

January 2025

State Key Laboratory of Cardiovascular Diseases and Medical Innovation Center, School of Medicine, Shanghai East Hospital, Tongji University, Shanghai, 200120, China.

Background: Dilated cardiomyopathy (DCM) is one of the most common causes of heart failure. Infiltration and alterations in non-cardiomyocytes of the human heart involve crucially in the occurrence of DCM and associated immunotherapeutic approaches.

Methods: We constructed a single-cell transcriptional atlas of DCM and normal patients.

View Article and Find Full Text PDF

Background: The diagnosis and treatment of epilepsy continue to face numerous challenges, highlighting the urgent need for the development of rapid, accurate, and non-invasive methods for seizure detection. In recent years, advancements in the analysis of electroencephalogram (EEG) signals have garnered widespread attention, particularly in the area of seizure recognition.

Methods: A novel hybrid deep learning approach that combines feature fusion for efficient seizure detection is proposed in this study.

View Article and Find Full Text PDF

Background: The progression and severity of periodontitis (PD) are associated with the release of extracellular vesicles by periodontal tissue cells. However, the precise mechanisms through which exosome-related genes (ERGs) influence PD remain unclear. This study aimed to investigate the role and potential mechanisms of key exosome-related genes in PD using transcriptome profiling at the single-cell level.

View Article and Find Full Text PDF

Background: Machine learning (ML) is increasingly used to predict clinical deterioration in intensive care unit (ICU) patients through scoring systems. Although promising, such algorithms often overfit their training cohort and perform worse at new hospitals. Thus, external validation is a critical - but frequently overlooked - step to establish the reliability of predicted risk scores to translate them into clinical practice.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!