Psoriasis is a chronic inflammatory skin disorder with multiple causes, including genetic and environmental factors. Despite advances in treatment, there remains a need to identify novel therapeutic targets. A Mendelian randomization (MR) analysis was conducted to identify therapeutic targets for psoriasis. Data on cis-expression quantitative trait loci were obtained from the eQTLGen Consortium (n = 31,684). Summary statistics for psoriasis (outcome) were sourced from the GWAS Catalog with a sample size of 484,598, including 5,427 cases and 479,171 controls. Colocalization analysis was used to assess whether psoriasis risk and gene expression were driven by shared single nucleotide polymorphisms. Drug prediction and molecular docking were utilized to validate the pharmacological value of the drug targets. The MR analysis found that 81 drug targets were significantly associated, and two (TYK2 and PRSS36) were supported by colocalization analysis (PP.H4 > 0.80). Phenome-wide association studies did not show any associations with other traits at the gene level. Biologically, these genes were closely related to immune function. Molecular docking revealed strong binding with drugs and proteins, as supported by available structural data. This study validated TYK2 as a drug target for psoriasis, in line with its existing clinical use, including the development of decucravacitinib. PRSS36 is a potential novel target requiring further investigation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11471773 | PMC |
http://dx.doi.org/10.1038/s41598-024-74148-3 | DOI Listing |
Sci Rep
December 2024
Department of Pharmaceutical Chemistry, Dr. D. Y. Patil Institute of Pharmaceutical Sciences and Research, Pimpri, Pune, India.
The emergence of self-propelling magnetic nanobots represents a significant advancement in the field of drug delivery. These magneto-nanobots offer precise control over drug targeting and possess the capability to navigate deep into tumor tissues, thereby addressing multiple challenges associated with conventional cancer therapies. Here, Fe-GSH-Protein-Dox, a novel self-propelling magnetic nanobot conjugated with a biocompatible protein surface and loaded with doxorubicin for the treatment of triple-negative breast cancer (TNBC), is reported.
View Article and Find Full Text PDFSci Rep
December 2024
School of Mechanical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China.
Microtextured microneedles are tiny needle-like structures with micron-scale microtextures, and the drugs stored in the microtextures can be released after entering the skin to achieve the effect of precise drug delivery. In this study, the skin substitution model of Ogden's hyperelastic model and the microneedle array and microtexture models with different geometrical parameters were selected to simulate and analyse the flow of the microtexture microneedle arrays penetrating the skin by the finite-element method, and the length of the microneedles was determined to be 200 μm, the width 160 μm, and the value of the gaps was determined to be 420 μm. A four-pronged cone was chosen as the shape of microneedles, and a rectangle was chosen as the shape of the drug-carrying microneedle.
View Article and Find Full Text PDFProstate Cancer Prostatic Dis
December 2024
Department of Radiation Oncology, Peking University First Hospital, 100034, Beijing, China.
Background: Metastatic prostate cancer (PCa) has much lower survival and ultimately develops castration resistance, which expects novel targets and therapeutic approaches. As a result of iron-dependent lipid peroxidation, ferroptosis triggers programmed cell death and has been associated with castration-resistant prostate cancer (CRPC).
Subjects: To better understand how ferroptosis can be used to treat CRPC, we reviewed the following: First, ferroptosis mechanisms and characteristics.
Sci Rep
December 2024
Department of Urology, Urological Science Institute, Yonsei University College of Medicine, 50-1 Yonsei-Ro, Seodaemun-gu, Seoul, 03722, South Korea.
Carbon dots (CDs) are versatile nanomaterials that are considered ideal for application in bioimaging, drug delivery, sensing, and optoelectronics owing to their excellent photoluminescence, biocompatibility, and chemical stability features. Nitrogen doping enhances the fluorescence of CDs, alters their electronic properties, and improves their functional versatility. N-doped CDs can be synthesized via solvothermal treatment of carbon sources with nitrogen-rich precursors; however, systematic investigations of their synthesis mechanisms have been rarely reported.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Biotechnology, Mahatma Gandhi Central University, Motihari, 845401, India.
Microtubules are dynamic cytoskeletal structures essential for cell architecture, cellular transport, cell motility, and cell division. Due to their dynamic nature, known as dynamic instability, microtubules can spontaneously switch between phases of growth and shortening. Disruptions in microtubule functions have been implicated in several diseases, including cancer, neurodegenerative disorders such as Alzheimer's and Parkinson's disease, and birth defects.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!