Temperature governs the community assembly of root-associated ectomycorrhizal fungi in alpine forests on the Qinghai-Tibetan Plateau.

Sci Total Environ

CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China. Electronic address:

Published: December 2024

Unraveling the assembly processes of ectomycorrhizal (ECM) fungal communities in changing environments is crucial for forecasting the impacts of climate change on forests. However, the assembly processes and key drivers of root-associated ECM fungal communities in alpine coniferous forests remain poorly understood. To address this knowledge gap, we conducted sampling in 65 monodominant alpine coniferous forests, which encompass 11 plant species belonging to three genera (Abies, Pinus, and Picea) within the Pinaceae family, all located on the Qinghai-Tibetan Plateau. We employed a combination of null model and multivariate analyses to elucidate the drivers and assembly processes of ECM fungal communities. Our results revealed significant variation in the composition and diversity of root-associated ECM fungal communities among Abies, Pinus, and Picea, indicating specific preferences for ECM fungi among Pinaceae genera. Importantly, mean annual temperature (MAT) emerged as the primary driver of these variations and regulated the assembly processes within the community of root-associated ECM fungi. As MAT temperature, the α-diversity of these fungi significantly decreased, suggesting that increased temperature may reduce the species diversity of root-associated ECM fungi in alpine forests. Furthermore, stochastic processes, such as dispersal limitation and drift, became more influential as MAT increased. Conversely, the role of deterministic processes, particularly heterogeneous selection, in shaping the ECM fungal community assembly weakened with increasing MAT. This study provides novel theoretical insights into the processes of ECM fungal community assembly in alpine forests, emphasizing the pivotal role of temperature in regulating the assembly processes and compositional dynamics of root-associated ECM fungal communities in these unique environments.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2024.176820DOI Listing

Publication Analysis

Top Keywords

ecm fungal
28
assembly processes
20
fungal communities
20
root-associated ecm
20
community assembly
12
alpine forests
12
ecm fungi
12
ecm
10
assembly
8
fungi alpine
8

Similar Publications

Decellularized Green and Brown Macroalgae as Cellulose Matrices for Tissue Engineering.

J Funct Biomater

December 2024

Department of Pharmacology and Toxicology, School of Biomedical Sciences, University of Otago, Dunedin 9054, New Zealand.

Scaffolds resembling the extracellular matrix (ECM) provide structural support for cells in the engineering of tissue constructs. Various material sources and fabrication techniques have been employed in scaffold production. Cellulose-based matrices are of interest due to their abundant supply, hydrophilicity, mechanical strength, and biological inertness.

View Article and Find Full Text PDF

Deep multi-omics integration approach reveals new molecular features of uterine leiomyosarcoma.

Biochim Biophys Acta Mol Basis Dis

December 2024

Universidade Federal do Rio Grande do Norte, IMD, Ppg-Bioinformatica, Natal, Brazil; University of Southern California, Keck School of Medicine, Department of Translational Genomics, 1450 Biggy St., Los Angeles, CA 90089, United States of America. Electronic address:

Uterine leiomyosarcoma (uLMS) is a rare and aggressive cancer representing approximately 25 % of all uterine malignancies. The molecular heterogeneity and pathogenesis of uLMS are not well understood, and translational studies aimed at discovering the vulnerabilities of this tumor type are of high priority. We conducted an innovative comprehensive multi-omics integration study from DNA to protein using freshly frozen tumors.

View Article and Find Full Text PDF

Introduction: The aging process is intricately linked to alterations in cellular and tissue structures, with the respiratory system being particularly susceptible to age-related changes. Therefore, this study aimed to profile the activity of proteases using activity-based probes in lung tissues of old and young rats, focusing on the expression levels of different, in particular cathepsins G and X and matrix Metalloproteinases (MMPs). Additionally, the impact on extracellular matrix (ECM) components, particularly fibronectin, in relation to age-related histological and ultrastructural changes in lung tissues was investigated.

View Article and Find Full Text PDF

Targeting breast tumor extracellular matrix and stroma utilizing nanoparticles.

Clin Transl Oncol

December 2024

Department of Refrigeration and air Conditioning Techniques, College of Technical Engineering, The Islamic University, Najaf, Iraq.

Breast cancer is a complicated malignancy and is known as the most common cancer in women. Considerable experiments have been devoted to explore the basic impacts of the tumor stroma, particularly the extracellular matrix (ECM) and stromal components, on tumor growth and resistance to treatment. ECM is made up of an intricate system of proteins, glycosaminoglycans, and proteoglycans, and maintains structural support and controls key signaling pathways involved in breast tumors.

View Article and Find Full Text PDF

Tissue regeneration in many skin defects is progressing with new treatments in recent years. Tissue engineering with the use of scaffolds offers more versatile and faster solutions in treatment. Extracellular matrix (ECM) and its three-dimensional (3D) network structure as a biological bond by imitating the tissue microstructure has been used for tissue repair, which can answer many existing challenges.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!