Assessing nanotoxicity of food-relevant particles: A comparative analysis of cellular responses in cell monolayers versus 3D gut epithelial cultures.

Food Chem Toxicol

School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore; Skin Research Institute of Singapore (SRIS), Agency for Science, Technology and Research, Singapore; Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, CleanTech One, Singapore. Electronic address:

Published: November 2024

Engineered nanoparticles (NPs) are extensively used in the food industry, yet safety concerns remain. The lack of validated methodologies is a bottleneck towards resolving this uncertainty. Hence, the current study aims to compare two cell models by examining the toxicological impacts of two food-relevant NPs (SiO and Ag) on intestinal epithelia using monolayer Caco-2 cells and full-thickness 3D tissue models of human small intestines (EpiIntestinal™). Comprehensive characterization and dosimetric analysis of the NPs were performed to determine effective doses and model realistic exposures. Neither genotoxicity nor cytotoxicity were detected in the 3D tissues after NP treatment, while the 2D cultures exhibited cytotoxic response from Ag NP treatment for 24 h at 1 μg/ml. Hyperspectral imaging and transmission electron microscopy confirmed uptake of both NPs by cells in both 2D and 3D culture models. Ag NPs caused an increase in autophagy, whereas SiO NPs induced increased cytoplasmic vacuolization. Based on realistic exposure levels studied, the 3D small intestinal tissue model was found to be more resilient to NP treatment compared to 2D cell monolayers. This comparative approach towards toxicological assessment of food relevant NPs could be used as a framework for future analysis of NP behavior and nanotoxicity in the gut.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.fct.2024.115055DOI Listing

Publication Analysis

Top Keywords

cell monolayers
8
nps
7
assessing nanotoxicity
4
nanotoxicity food-relevant
4
food-relevant particles
4
particles comparative
4
comparative analysis
4
analysis cellular
4
cellular responses
4
responses cell
4

Similar Publications

Self-assembled monolayers (SAM) as hole transport layers have been widely used in high-efficiency inverted perovskite solar cells (PSCs) exceeded 26 %. However, the poor coverage and non-uniform distribution on the substrate of SAM further restrict the improvement of device performance. Herein, we utilize the mixed SAM strategy via the MeO-2PACz along with perfluorotripropylamine (FC-3283) to improve the SAM coverage, aiming to accelerate the carrier transport, promote the perovskite growth, regulate the surface energy levels and suppress the nonradiative recombination.

View Article and Find Full Text PDF

Human milk extracellular vesicles (EVs) are crucial mother-to-baby messengers that transfer biological signals. These EVs are reported to survive digestion and transport across the intestine. The mechanisms of interaction between human milk EVs and the intestinal mucosa, including epithelial uptake remain unclear.

View Article and Find Full Text PDF

Doxorubicin and topotecan resistance in ovarian cancer: Gene expression and microenvironment analysis in 2D and 3D models.

Biomed Pharmacother

January 2025

Institute of Health Sciences, Collegium Medicum, University of Zielona Góra, Zyty 28 St., Zielona Góra 65-046, Poland. Electronic address:

This study explores the mechanisms underlying chemotherapy resistance in ovarian cancer (OC) using doxorubicin (DOX) and topotecan (TOP)-resistant cell lines derived from the drug-sensitive A2780 ovarian cancer cell line. Both two-dimensional (2D) monolayer cell cultures and three-dimensional (3D) spheroid models were employed to examine the differential drug responses in these environments. The results revealed that 3D spheroids demonstrated significantly higher resistance to DOX and TOP than 2D cultures, suggesting a closer mimicry of in vivo tumour conditions.

View Article and Find Full Text PDF

Wafer-scale monolayer MoS film integration for stable, efficient perovskite solar cells.

Science

January 2025

Beijing Key Laboratory for Theory and Technology of Advanced Battery Materials, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, School of Materials Science and Engineering, Peking University, Beijing, China.

One of the primary challenges in commercializing perovskite solar cells (PSCs) is achieving both high power conversion efficiency (PCE) and sufficient stability. We integrate wafer-scale continuous monolayer MoS buffers at the top and bottom of a perovskite layer through a transfer process. These films physically block ion migration of perovskite into carrier transport layers and chemically stabilize the formamidinium lead iodide phase through strong coordination interaction.

View Article and Find Full Text PDF

Fast yet force-effective mode of supracellular collective cell migration due to extracellular force transmission.

PLoS Comput Biol

January 2025

Department of Mechanical Engineering & Materials Science, Washington University, St. Louis, Missouri, United States of America.

Cell collectives, like other motile entities, generate and use forces to move forward. Here, we ask whether environmental configurations alter this proportional force-speed relationship, since aligned extracellular matrix fibers are known to cause directed migration. We show that aligned fibers serve as active conduits for spatial propagation of cellular mechanotransduction through matrix exoskeleton, leading to efficient directed collective cell migration.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!