Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Phthalate monoesters have been identified as endocrine disruptors in a variety of models, yet understanding of their exact mechanisms of action and molecular targets in cells remains incomplete. Here, we set to determine whether epidemiologically relevant mono(2-ethyl-5-hydroxyhexyl) phthalate (MEHHP) can affect biological processes by altering cell plasma membrane fluidity or formation of cell-cell contacts. As a model system, we chose endometrial stromal cell lines, one of which was previously used in a transcriptomic study with MEHHP or MEHHP-containing mixtures. A short-term exposure (1 h) of membrane preparations to endocrine disruptors was sufficient to induce changes in membrane fluidity/rigidity, whereas different mixtures showed different effects at various depths of the bilayer. A longer exposure (96 h) affected the ability of cells to form spheroids and highlighted issues with membrane integrity in loosely assembled spheroids. Finally, in spheroids assembled from T-HESC cells, MEHHP interfered with the formation of cell-cell contacts as indicated by the immunostaining of zonula occludens 1 protein. Overall, this study emphasized the need to consider plasma membrane, membrane-bound organelles, and secretory vesicles as possible biological targets of endocrine disruptors and offered an explanation for a multitude of endocrine disruptor roles documented earlier.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.reprotox.2024.108733 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!