Morphofunctional characterization of the three main adipose tissue depots in rainbow trout (Oncorhynchus mykiss).

Comp Biochem Physiol B Biochem Mol Biol

Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain. Electronic address:

Published: January 2025

Visceral adipose tissue (VAT) is the primary fat reservoir and energy source in fish. Other relevant fat depots include subcutaneous adipose tissue (SAT), located under epithelial layers, and intramuscular adipose tissue (IMAT), found between the myotomes. The present study investigates the morphological, gene expression and functional characteristics of these different depots in rainbow trout (Oncorhynchus mykiss). Commercial rainbow trout of two different average weights were sampled for histology, lipid quantification and fatty acids profile. Mature adipocytes were isolated for gene expression analyses of lipid metabolic markers. Both VAT and SAT showed large adipocytes, and high total lipid content, suggesting hypertrophic growth. Adipocytes in IMAT were consistently smaller regardless of fish size. While fatty acid composition was similar across depots, SAT had lower levels of palmitic acid and higher levels of polyunsaturated fatty acids that act as precursors of phospholipids and eicosanoids such as eicosapentaenoic acid, compared to VAT and IMAT. Gene expression analyses revealed higher levels of fatty acid transporters, lipolysis and β-oxidation markers in VAT and SAT compared to IMAT, suggesting a more active lipid metabolism. These data support the role of VAT as the main energy depot, while SAT may act as a secondary reservoir, and IMAT potentially serves as an occasional energy source for muscles. This study provides valuable insights into the distinct properties of the different fat depots in fish, which may help to optimize strategies to modulate adiposity for improved health, metabolism, and product quality.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cbpb.2024.111039DOI Listing

Publication Analysis

Top Keywords

adipose tissue
16
rainbow trout
12
gene expression
12
depots rainbow
8
trout oncorhynchus
8
oncorhynchus mykiss
8
energy source
8
fat depots
8
fatty acids
8
expression analyses
8

Similar Publications

Background: Metabolic dysfunction-associated steatotic liver disease (MASLD) encompasses a range of histological findings from the generally benign simple steatosis to steatohepatitis (MASH) which can progress to fibrosis and cirrhosis. Several factors, including the microbiome, may contribute to disease progression.

Results: Here, we demonstrate links between the presence and abundance of specific bacteria in the adipose and liver tissues, inflammatory genes, immune cell responses, and disease severity.

View Article and Find Full Text PDF

Background: Perinatal growth and nutrition have been shown to be determinants in the programming of different tissues, such as adipose tissue, predisposing individuals to metabolic alterations later in life. Previous studies have documented an increased risk of metabolic disturbances and low-grade inflammation in prepubertal children with a history of extrauterine growth restriction (EUGR). The aim of this study was to evaluate possible alterations resulting from impaired growth during early childhood and their impact on young adult health.

View Article and Find Full Text PDF

Background: Muscle and adipose tissue are the most critical indicators of beef quality, and their development and function are regulated by noncoding RNAs (ncRNAs). However, the differential regulatory mechanisms of ncRNAs in muscle and adipose tissue remain unclear.

Results: In this study, 2,343 differentially expressed mRNAs (DEMs), 235 differentially expressed lncRNAs (DELs), 95 differentially expressed circRNAs (DECs) and 54 differentially expressed miRNAs (DEmiRs) were identified in longissimus dorsi muscle (LD), subcutaneous fat (SF) and perirenal fat (VF) in Qinchuan beef cattle.

View Article and Find Full Text PDF

Chinese Medicine Combined with Adipose Tissue-Derived Mesenchymal Stem Cells: A New Promising Aspect of Integrative Medicine.

Chin J Integr Med

January 2025

Basic Laboratory of Integrated Traditional Chinese and Western Medicine, Shanxi University of Chinese Medicine, Jinzhong, Shanxi Province, 030619, China.

Adipose tissue-derived mesenchymal stem cells (ADSCs) are crucially involved in various biological processes because of their self-renewal, multi-differentiation, and immunomodulatory activities. Some ADSC's characteristics have been associated with the basic theory of Chinese medicine (CM), especially the Meridian theory. CM can improve the biological properties of ADSCs to facilitate their use in injury treatment, restore immune homeostasis, and inhibit inflammatory responses.

View Article and Find Full Text PDF

Middle-aged obesity, characterized by excessive fat accumulation and systemic energy imbalance, often precedes various health complications. Recent research has unveiled a surprising link between DNA damage response and energy metabolism. Here, we explore the role of Eepd1, a DNA repair enzyme, in regulating adipose tissue function and obesity onset.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!