A multifunctional self-reinforced injectable hydrogel for enhancing repair of infected bone defects by simultaneously targeting macrophages, bacteria, and bone marrow stromal cells.

Acta Biomater

Hubei Key Laboratory of Natural Products Research and Development, China Three Gorges University, Yichang, 443002, China; College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang, 443002, China. Electronic address:

Published: November 2024

AI Article Synopsis

  • Injectable hydrogels (IHs) can effectively promote the repair of infected bone defects, but challenges exist in providing antibacterial and osteo-inductive properties while maintaining mechanical integrity.
  • The newly developed AOHA-RA/Lap nanocomposite IH utilizes two types of reversible cross-links for enhanced injectability and self-recovery, and it can release active compounds for over 10 days.
  • In studies, this hydrogel showed strong antibacterial effects against common bacteria and effectively induced necessary immune responses and bone cell differentiation, significantly improving healing in infected bone defect models without major side effects.

Article Abstract

Injectable hydrogels (IHs) have demonstrated huge potential in promoting repair of infected bone defects (IBDs), but how to endow them with desired anti-bacterial, immunoregulatory, and osteo-inductive properties as well as avoid mechanical failure during their manipulation are challenging. In this regard, we developed a multifunctional AOHA-RA/Lap nanocomposite IH for IBDs repair, which was constructed mainly through two kinds of reversible cross-links: (i) the laponite (Lap) crystals mediated electrostatic interactions; (ii) the phenylboronic acid easter bonds between the 4-aminobenzeneboronic acid grafted oxidized hyaluronic acid (AOHA) and rosmarinic acid (RA). Due to the specific structural composition, the AOHA-RA/Lap IH demonstrated superior injectability, self-recoverability, spatial adaptation, and self-reinforced mechanical properties after being injected to the bone defect site. In addition, the RA molecules could be locally released from the hydrogel following a Weibull model for over 10 days. Systematic in vitro/vivo assays proved the strong anti-bacterial activity of the hydrogel against Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli). Moreover, its capability of inducing M polarization of macrophages (M) and osteogenic differentiation of bone marrow stromal cells (BMSCs) was verified either, and the mechanism of the former was identified to be related to the JAK1-STAT1 and PI3K-AKT signaling pathways and that of the latter was identified to be related to the calcium signaling pathway, extracellular matrix (ECM) receptor interaction and TGF-β signaling pathway. After being implanted to a S. aureus infected rat skull defect model, the AOHA-RA/Lap IH significantly accelerated repair of IBDs without causing significant systemic toxicity. STATEMENT OF SIGNIFICANCE: Rosmarinic acid and laponite were utilized to develop an injectable hydrogel, promising for accelerating repair of infected bone defects in clinic. The gelation of the hydrogel was completely driven by two kinds of reversible cross-links, which endow the hydrogel superior spatial adaption, self-recoverability, and structural stability. The as-prepared hydrogel demonstrated superior anti-bacterial/anti-biofilm activity and could induce M polarization of macrophages and osteogenic differentiation of BMSCs. The mechanism behind macrophages polarization was identified to be related to the JAK1-STAT1 and PI3K-AKT signaling pathways. The mechanism behind osteogenic differentiation of BMSCs was identified to be related to the ECM receptor interaction and calcium signaling/TGF-β signaling pathways.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.actbio.2024.10.014DOI Listing

Publication Analysis

Top Keywords

repair infected
12
infected bone
12
bone defects
12
osteogenic differentiation
12
signaling pathways
12
injectable hydrogel
8
bone marrow
8
marrow stromal
8
stromal cells
8
kinds reversible
8

Similar Publications

Annually, thousands of individuals suffer from skin injuries resulting from trauma, surgeries, or diabetes. Inadequate wound treatment can delay healing and increase the risk of severe infections. In this context, a promising synthetic polymer with potent antimicrobial properties, Poly{2-[(methacryloyloxy)ethyl]trimethylammonium chloride} (PMETAC), is synthesized and crosslinked with N,N'-Methylenebis(acrylamide) (BIS) in the presence of Chitosan (CH), a natural, biocompatible polysaccharide that promotes cell regeneration and provides additional beneficial properties.

View Article and Find Full Text PDF

Charge Regulation-Enhanced Type I Photosensitizer-Loaded Hydrogel Dressing for Hypoxic Bacterial Inhibition and Biofilm Elimination.

ACS Nano

January 2025

State Key Laboratory of Fine Chemicals, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518055, China.

Biofilm-induced chronic bacterial infections represent a significant challenge in modern medicine due to their resistance to conventional antibiotic treatments. Although photodynamic therapy (PDT) has emerged as a promising antibiotic-free antibacterial strategy, the hypoxic condition within biofilms and the lack of an effective local drug delivery system have limited the clinical effectiveness of photosensitizer (PS) agents. Herein, we propose a type of charge regulation-enhanced type I PS-loaded hydrogel dressing for treating biofilm infection.

View Article and Find Full Text PDF

Background: Addressing oculoplastic conditions in the preoperative period ensures both the safety and functional success of any ophthalmic procedure. Some oculoplastic conditions, like nasolacrimal duct obstruction, have been extensively studied, whereas others, like eyelid malposition and thyroid eye disease, have received minimal or no research.

Aim: To investigate the current practice patterns among ophthalmologists while treating concomitant oculoplastic conditions before any subspecialty ophthalmic intervention.

View Article and Find Full Text PDF

Traumatic cerebrospinal fluid (CSF) leakage from skull base fractures increases the risk of bacterial meningitis, which is associated with a high mortality rate in adults, and commonly results in severe neurological outcomes. While most cases of CSF leakage occur within three months post-injury and generally resolve spontaneously, delayed-onset meningitis remains a challenging complication. Herein, we report a rare case of severe bacterial meningitis with an intraventricular abscess one year following a frontal skull base fracture, despite no CSF leak.

View Article and Find Full Text PDF

Background: The purpose of this study was to compare the outcomes of Trans-umbilical single-port laparoscopic complete extraperitoneal closure (LCEC) and laparoscopic intracorporeal closure (LIC) for inguinal hernia by analysis of follow-up data over 5 years.

Methods: In this prospective randomized controlled trial, 524 children with inguinal hernia were randomly assigned to undergo LCEC or LIC between August 2016 and December 2017. The primary outcome measures were the success and recurrence rates.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!