A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Effects of heat stress mitigation strategies on feedlot cattle performance, environmental, and economic outcomes in a hot climate. | LitMetric

AI Article Synopsis

  • - The beef industry faces challenges due to rising global temperatures, particularly in feedlots where heat stress impacts animal welfare and economic performance, making shade structures a key mitigation strategy.
  • - An experiment with 1,560 Bos indicus bulls tested four types of shade structures and found that those in domes with fans (DCA) gained significantly more weight and performed better in terms of daily growth and feed efficiency compared to other structures.
  • - Utilizing DCA and dome structures without fans (DSA) led to a reduction in greenhouse gas and ammonia emissions by 3-8% when extrapolated to an annual turnover of nearly 210,000 animals, suggesting environmental benefits alongside improved growth performance.

Article Abstract

The increase in average global temperatures presents a challenge for the beef industry, especially in the feedlot sector where heat stress is a major animal welfare and economic concern. Shade is one of the most practical methods to mitigate heat stress in feedlot cattle. An experiment was conducted as a completely randomized design with 1 560 Bos indicus bulls (initial BW=287 kg) where three shade structure types were used to investigate the effects of different heat stress mitigation methods on cattle growth performance, environmental, and economic outcomes using live animal data, and a partial lifecycle assessment using the Integrated Farm System Model. The live animal portion of the experiment was done once a year over a 2-year period with three pen replications per treatment per year (n = 6 per treatment). Four shade structures used were conventional shade (SC; steel shade 1.8 m of shade/animal), double conventional shade (DS; steel shade 3.6 m of shade/animal), dome structures without fans (DSA; 8.5 m/animal with 98% solar radiation blocked), and domes with fans (DCA; DSA plus three large sized low-speed fans). Each pen held 65 bulls in an area of 570 m. Live animal data were analyzed as a completely randomized design using the GLM procedure of SAS (version 9.4) with shade type as fixed effect, pen as the experimental unit, and repetition (year) considered a random effect. Cattle housed under DCA had 22 and 20 kg heavier final body BW (P < 0.05) compared to those housed under SC and DS, respectively. Final BW of DCA and DSA cattle were similar (P > 0.05). Average daily gain, feed efficiency, and hot carcass weight were greater (P < 0.05) for cattle housed under DCA compared to the rest of the shade types. Dry matter intake was not affected (P > 0.05). When treatment results were extrapolated to the annual feedlot turnover of 209,700 animals, cattle in DSA and DCA versus SC and DS had 3-8% reductions in greenhouse gas and ammonia emission intensities. Compared to SC, DCA increased profitability by $29.66/animal, followed by DSA and DS with profit increases of $5.79 and $8.90/animal, respectively. Overall, the implementation of advanced shade structures improved cattle performance and profitability while reducing the environmental impact of beef production.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.animal.2024.101257DOI Listing

Publication Analysis

Top Keywords

heat stress
16
live animal
12
shade
9
effects heat
8
stress mitigation
8
feedlot cattle
8
cattle performance
8
performance environmental
8
environmental economic
8
economic outcomes
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!