AI Article Synopsis

  • * Current challenges include issues like soluble polysulfides and low sulfur utilization, which hinder practical applications in batteries.
  • * A novel sulfur-carbon hybrid material was developed to address these challenges, achieving nearly 99% sulfur utilization and high performance in sodium-sulfur battery systems.

Article Abstract

Nanoconfinement is a promising strategy in chemistry enabling increased reaction rates, enhanced selectivity, and stabilized reactive species. Sulfur's abundance and highly reversible two-electron transfer mechanism have fueled research on sulfur-based electrochemical energy storage. However, the formation of soluble polysulfides, poor reaction kinetics, and low sulfur utilization are current bottlenecks for broader practical application. Herein, a novel strategy is proposed to confine sulfur species in a nanostructured hybrid sulfur-carbon material. A microporous sulfur-rich carbon is produced from sustainable natural precursors via inverse vulcanization and condensation. The material exhibits a unique structure with sulfur anchored to the conductive carbon matrix and physically confined in ultra-micropores. The structure promotes Na ion transport through micropores and electron transport through the carbon matrix, while effectively immobilizing sulfur species in the nanoconfined environment, fostering a quasi-solid-state redox reaction with sodium. This translates to ≈99% utilization of the 2e reduction of sulfur and the highest reported capacity for a room temperature NaS electrochemical system, with high rate capability, coulombic efficiency, and long-term stability. This study offers an innovative approach toward understanding the key physicochemical properties of sulfurcarbon nanohybrid materials, enabling the development of high-performance cathode materials for room-temperature Na-S batteries with efficient sulfur utilization.

Download full-text PDF

Source
http://dx.doi.org/10.1002/smll.202407300DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11656682PMC

Publication Analysis

Top Keywords

efficient sulfur
8
sulfur utilization
8
sulfur species
8
carbon matrix
8
sulfur
7
sustainable sulfur-carbon
4
sulfur-carbon hybrids
4
hybrids efficient
4
sulfur redox
4
redox conversions
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!