Background: Aluminium is a mono-isotope element and can be determined by inductively coupled plasma mass spectrometry (ICP-MS). The measurement of aluminium by ICP-MS suffers potential spectral interferences from multiple elements, which make it challenging to ensure the reliability of the results. Fortunately, the availability of tandem quadrupole ICP-MS (i.e. ICP-QMS/QMS) made it possible to measure multiple aluminium related ionic species for analysis. In the present work, on-line generated ozone was introduced as the reaction gas to the ICP-QMS/QMS for the analysis of aluminium.

Results: Multiple ionic species were obtained by using ozone as the cell gas for determination of aluminium by ICP-QMS/QMS. In comparison to oxygen, ozone apparently improved the yield of AlO, AlO, and AlO from the reaction with Al, attributable to the exothermic reactions when ozone was used. Determination of aluminium with these product ions was investigated at multiple radio frequency (RF) power conditions (800 W-1600 W, step 200 W) for the plasma. At low power conditions (800 W and 1000 W), the measurement of each ion suffered notable non-spectral interferences and caused difference in sensitivities by around 20 % between a digested sample of tea leaf powder and a simple aluminium standard solution. Based on a standard addition method, the result of aluminium in a tea leaf powder certified reference material obtained with each product ion (AlO, n = 0 to 3) agreed with the certified value, and independent to the RF power of the plasma.

Significance: Due to the endothermic reactions of aluminium ion with ozone, the yields of AlO (n = 1 to 3) were greatly improved. As a results, the use of ozone as a reaction gas for ICP-QMS/QMS permitted the measurement of aluminium by multiple ionic species, AlO (n = 0 to 3), which provide internal-cross-checkable quantitative results for this mono-isotopic element.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.aca.2024.343185DOI Listing

Publication Analysis

Top Keywords

ionic species
16
multiple ionic
12
determination aluminium
12
aluminium
10
ozone reaction
8
tandem quadrupole
8
inductively coupled
8
coupled plasma
8
plasma mass
8
mass spectrometry
8

Similar Publications

Capacitance enhancement by ion-laminated borophene-like layered materials.

Nat Commun

January 2025

Laboratory for Chemistry and Life Science, Institute of Integrated Research, Institute of Science Tokyo, Yokohama, 226-8501, Japan.

Atomically flat two-dimensional networks of boron are attracting attention as post-graphene materials. An introduction of cations between the boron atomic layers can exhibit unique electronic functions that are not achieved by neutral graphene or its derivatives. In the present study, we propose a synthesis strategy for ion-laminated boron layered materials in a solution phase, which enables the preparation of analogs by changing the alkali-metal species.

View Article and Find Full Text PDF

ConspectusLithium-ion batteries (LIBs) based on graphite anodes are a widely used state-of-the-art battery technology, but their energy density is approaching theoretical limits, prompting interest in lithium-metal batteries (LMBs) that can achieve higher energy density. In addition, the limited availability of lithium reserves raises supply concerns; therefore, research on postlithium metal batteries is underway. A major issue with these metal anodes, including lithium, is dendritic formation and insufficient reversibility, which leads to safety risks due to short circuits and the use of flammable electrolytes.

View Article and Find Full Text PDF

Mitochondria as a Therapeutic Target: Focusing on Traumatic Brain Injury.

J Integr Neurosci

January 2025

Department of Hepatology, Federal University of Health Sciences of Porto Alegre (UFCSPA), 90050-170 Porto Alegre, Rio Grande do Sul (RS), Brazil.

Mitochondria are organelles of eukaryotic cells delimited by two membranes and cristae that consume oxygen to produce adenosine triphosphate (ATP), and are involved in the synthesis of vital metabolites, calcium homeostasis, and cell death mechanisms. Strikingly, normal mitochondria function as an integration center between multiple conditions that determine neural cell homeostasis, whereas lesions that lead to mitochondrial dysfunction can desynchronize cellular functions, thus contributing to the pathophysiology of traumatic brain injury (TBI). In addition, TBI leads to impaired coupling of the mitochondrial electron transport system with oxidative phosphorylation that provides most of the energy needed to maintain vital functions, ionic homeostasis, and membrane potentials.

View Article and Find Full Text PDF

The importance of fluorine and aluminum in all aspects of daily life has led to an enormous increase in human exposure to these elements in their various forms. It is therefore important to understand the routes of exposure and to investigate and understand the potential toxicity. Of particular concern are aluminum-fluoride complexes (AlF), which are able to mimic the natural isostructural phosphate group and influence the activity of numerous essential phosphoryl transferases.

View Article and Find Full Text PDF

Salinity affects crop growth and productivity, and this stress can be increased along with drought or high temperature stresses and poor irrigation management. Cultivation of salt-tolerant crops plays a critical role in enhancing crop yield under salt stress. In the past few decades, the mechanisms of plant adaptation to salt stress have been described, especially relying on ionic homeostasis, reactive oxygen species (ROS) scavenging, and phytohormone signaling.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!