Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Protein O-GlcNAc modification, similar to phosphorylation, supports cell survival by regulating key processes like transcription, cell division, trafficking, signaling, and stress tolerance. However, its role in protein homeostasis, particularly in protein synthesis, folding, and degradation, remains poorly understood. Our previous research shows that O-GlcNAc cycling enzymes associate with the translation machinery during protein synthesis and modify ribosomal proteins. Protein translation is closely linked to 26S proteasome activity, which recycles amino acids and clears misfolded proteins during stress, preventing aggregation and cell death. In this study, we demonstrate that pharmacological perturbation of the proteasome-like that used in cancer treatment- leads to the increased abundance of OGT and OGA in a ribosome-rich fraction, concurrent with O-GlcNAc modification of core translational and ribosome-associated proteins. This interaction is synchronous with eIF2α-dependent translational reprogramming. We also found that protein ubiquitination depends partly on O-GlcNAc metabolism in MEFs, as Ogt-depleted cells show decreased ubiquitination under stress. Using an O-GlcNAc-peptide enrichment strategy followed by LC-MS/MS, we identified 84 unique O-GlcNAc sites across 55 proteins, including ribosomal proteins, nucleolar factors, and the 70-kDa heat shock protein family. Hsp70 and OGT colocalize with the translational machinery in an RNA-independent manner, aiding in partial protein translation recovery during sustained stress. O-GlcNAc cycling on ribosome-associated proteins collaborates with Hsp70 to restore protein synthesis during proteotoxicity, suggesting a role in tumor resistance to proteasome inhibitors.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11567021 | PMC |
http://dx.doi.org/10.1016/j.jbc.2024.107877 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!