Functional diversification within the heme-binding split-barrel family.

J Biol Chem

Lawrence Berkeley National Laboratory, US Department of Energy Joint Genome Institute, Berkeley, California, USA; The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California, USA. Electronic address:

Published: November 2024

Due to neofunctionalization, a single fold can be identified in multiple proteins that have distinct molecular functions. Depending on the time that has passed since gene duplication and the number of mutations, the sequence similarity between functionally divergent proteins can be relatively high, eroding the value of sequence similarity as the sole tool for accurately annotating the function of uncharacterized homologs. Here, we combine bioinformatic approaches with targeted experimentation to reveal a large multifunctional family of putative enzymatic and nonenzymatic proteins involved in heme metabolism. This family (homolog of HugZ (HOZ)) is embedded in the "FMN-binding split barrel" superfamily and contains separate groups of proteins from prokaryotes, plants, and algae, which bind heme and either catalyze its degradation or function as nonenzymatic heme sensors. In prokaryotes these proteins are often involved in iron assimilation, whereas several plant and algal homologs are predicted to degrade heme in the plastid or regulate heme biosynthesis. In the plant Arabidopsis thaliana, which contains two HOZ subfamilies that can degrade heme in vitro (HOZ1 and HOZ2), disruption of AtHOZ1 (AT3G03890) or AtHOZ2A (AT1G51560) causes developmental delays, pointing to important biological roles in the plastid. In the tree Populus trichocarpa, a recent duplication event of a HOZ1 ancestor has resulted in localization of a paralog to the cytosol. Structural characterization of this cytosolic paralog and comparison to published homologous structures suggests conservation of heme-binding sites. This study unifies our understanding of the sequence-structure-function relationships within this multilineage family of heme-binding proteins and presents new molecular players in plant and bacterial heme metabolism.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11602992PMC
http://dx.doi.org/10.1016/j.jbc.2024.107888DOI Listing

Publication Analysis

Top Keywords

sequence similarity
8
proteins involved
8
heme metabolism
8
degrade heme
8
heme
7
proteins
6
functional diversification
4
diversification heme-binding
4
heme-binding split-barrel
4
family
4

Similar Publications

Clear cell renal cell carcinoma (ccRCC) is a highly malignant tumor characterized by a significant propensity for recurrence and metastasis. DNA methylation has emerged as a critical epigenetic mechanism with substantial utility in cancer diagnosis. In this study, multi-omics data were utilized to investigate the target genes regulated by the transcription factor MYC-associated zinc finger protein (MAZ) in ccRCC, leading to the identification of thymidine phosphorylase (TYMP) as a gene with notably elevated expression in ccRCC.

View Article and Find Full Text PDF

Study Objective: This study analyzes emergency medicine airway management trends and outcomes among community emergency departments.

Methods: A multicenter, retrospective chart review was conducted on 11,475 intubations from 15 different community emergency departments between January 1, 2015, and December 31, 2022. Data collected included patient's age, sex, rapid sequence intubation medications, use of cricoid pressure, method of intubation, number of attempts, admission diagnosis, and all-cause mortality rates.

View Article and Find Full Text PDF

A mobile genetic element-derived primase-polymerase harbors multiple activities implicated in DNA replication and repair.

Nucleic Acids Res

January 2025

State Key Laboratory of Agricultural Microbiology and College of Life Science and Technology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Shizishan Road No.1, Hongshan District, 430070 Wuhan, China.

Primase-polymerases (PrimPols) play divergent functions from DNA replication to DNA repair in all three life domains. In archaea and bacteria, numerous and diverse PPs are encoded by mobile genetic elements (MGEs) and act as the replicases for their MGEs. However, their varying activities and functions are not fully understood.

View Article and Find Full Text PDF

Shotgun and proximity-ligation metagenomic sequencing were used to generate thousands of metagenome assembled genomes (MAGs) from the untreated wastewater, activated sludge bioreactors, and anaerobic digesters from two full-scale municipal wastewater treatment facilities. Analysis of the antibiotic resistance genes (ARGs) in the pool of contigs from the shotgun metagenomic sequences revealed significantly different relative abundances and types of ARGs in the untreated wastewaster compared to the activated sludge bioreactors or the anaerobic digesters (p < 0.05).

View Article and Find Full Text PDF

A Framework of State Estimation on Laminar Grinding Based on the CT Image-Force Model.

Sensors (Basel)

January 2025

Institute of Robotics, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.

It is a great challenge for a safe surgery to localize the cutting tip during laminar grinding. To address this problem, we develop a framework of state estimation based on the CT image-force model. For the proposed framework, the pre-operative CT image and intra-operative milling force signal work as source inputs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!