A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Proteo-transcriptomic profiles reveal genetic mechanisms underlying primary hair follicle development in coarse sheep fetal skin. | LitMetric

Proteo-transcriptomic profiles reveal genetic mechanisms underlying primary hair follicle development in coarse sheep fetal skin.

J Proteomics

Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 81000 0, Qinghai, China. Electronic address:

Published: January 2025

AI Article Synopsis

  • - The study explores the genetic mechanisms of primary hair follicle (PF) formation in Qinghai Tibetan sheep, focusing on how hair follicle characteristics affect hair quality and yield.
  • - Researchers conducted analyses at fetal development stages (E65 and E85) and identified 217 genes with consistent expression patterns in proteomics and transcriptomics, validated by parallel response monitoring (PRM).
  • - Key proteins affecting hair follicle development were mapped out, highlighting their roles in metabolic processes and cell adhesion, providing insights for breeding strategies to improve wool traits in sheep.

Article Abstract

Long hair trait represents a valuable genetic asset in Qinghai Tibetan sheep, with its quality and yield being contingent upon the characteristics of hair follicles (HFs). This study aims to elucidate the genetic mechanism underlying primary hair follicles (PFs) formation through an integrated analysis of proteomics and transcriptomics. Samples were collected at key stages of fetal HF formation (E65 and E85) for histological observation, revealing significant alterations in the microstructure of PF (E65) during the developmental process. In this study, a comprehensive analysis revealed a total of 217 overlapping genes that exhibited concordant expression patterns at both the proteomic and transcriptomic levels. Furthermore, to ensure the reliability of our findings, we employed parallel response monitoring (PRM) to validate the obtained proteomic data. The protein-protein interaction (PPI) network diagram highlights five hub core proteins (TTN, IGTA2, F2, EGFR, and MYH14). These differentially expressed proteins (DEPs) play crucial roles in metabolic processes, cell adhesion, and diverse biological processes. The potential synergy between transcriptional regulation and post-translational modifications plays a pivotal role in governing the initiation PF development. The findings presented in this study offer innovative insights into the molecular mechanisms underlying HFs generation and establish a robust foundation for targeted breeding strategies aimed at augmenting wool traits in sheep. SIGNIFICANCE: The composition of coarse hair primarily consists of long, myelinated fibers originating from primary hair follicles. Sheep fetal skin initiates the formation of primary hair follicles around E65, followed by the development of secondary hair follicles around E85. Conducting differential proteomic and transcriptomic analyses during these developmental stages enhances our understanding of the molecular mechanisms underlying primary hair follicle development and offers valuable insights for sustainable utilization of high-quality germplasm resources.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jprot.2024.105327DOI Listing

Publication Analysis

Top Keywords

primary hair
20
hair follicles
20
mechanisms underlying
12
underlying primary
12
hair
9
hair follicle
8
follicle development
8
sheep fetal
8
fetal skin
8
proteomic transcriptomic
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!