Multifunctional robust protective coatings that combine biocompatibility, antifouling and antimicrobial properties play an essential role in reducing host reactions and infection on invasive medical devices. However, developing these protective coatings generally faces a paradox: coating materials capable of achieving robust adhesion to substrates via spontaneous deposition inevitably initiate continuous biofoulant adsorption, while those employing strong hydration capability to resist biofoulant attachment have limited substrate binding ability and durability under wear. Herein, we designed a multifunctional terpolymer of poly(dopamine methyacrylamide-co-2-methacryloyloxyethyl phoasphorylcholine-co-2-(dimethylamino)-ethyl methacrylate) (P(DMA-co-MPC-co-DMAEMA)), which integrates desired yet traditionally incompatible functions (i.e., robust adhesion, antifouling, lubrication, and antimicrobial properties). Direct normal and lateral force measurements, dynamic adsorption tests, surface ion conductance mapping were applied to comprehensively investigate the nanomechanics of coating-biofloulant interactions. Catechol groups of DMA act as basal anchors for robust substrate deposition, while the highly hydrated zwitterion of MPC provides apical protection to resist biofouling and wear. Moreover, the antimicrobial property is conferred through the protonation of tertiary amine groups on DMAEMA, inhibiting infection under physiological conditions. This work provides an effective strategy for harmonizing demanded yet incompatible properties in one coating material, with significant implications for the development of multifunctional surfaces towards the advancement of invasive biomedical devices. STATEMENT OF SIGNIFICANCE: Multifunctional robust protective coatings have been widely utilized in invasive medical devices to mitigate host responses and infection. However, modified surface coatings often encounter a trade-off between robust adhesion to substrates and strong hydration capability for antifouling and antimicrobial properties. We propose a universal strategy for surface modification by dopamine-assisted co-deposition with a multifunctional terpolymer of P(DMA-co-MPC-co-DMAEMA) that simultaneously achieves robust adhesion, antifouling, and antimicrobial properties. Through elucidating the nanomechanics with fundamentally understanding the interactions between the coating and biomacromolecules, we highlight the role of DMA for substrate adhesion, MPC for biofouling resistance, and DMAEMA for antimicrobial activity. This approach presents a promising strategy for constructing multifunctional coatings on minimally invasive medical devices by tuning interfacial molecular asymmetricity to reconcile incompatible properties within one coating.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.actbio.2024.10.015 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!