A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Global quantification and distribution of antibiotic resistance genes in oceans and seas: Anthropogenic impacts and regional variability. | LitMetric

AI Article Synopsis

  • - The study investigated the distribution of antibiotic resistance genes (ARGs) in various oceans, finding that the gene sul1 was widely present, indicating significant spread, especially in the Mediterranean Sea where human activity has likely impacted levels of ARGs.
  • - It highlighted that even remote areas, like the Arctic Ocean, showed the presence of multiple ARGs, pointing to a concerning trend of antibiotic resistance spreading globally, regardless of location.
  • - The research involved analyzing geographic trends and potential sources of contamination, emphasizing the need for targeted strategies and international cooperation to address the issue of ARGs in marine environments effectively.

Article Abstract

The global spread of antibiotic resistance genes (ARGs) in the marine environment poses a significant threat to public health and natural ecosystems. This study quantified and analysed the distribution and co-occurrence patterns of ARGs in a wide range of oceans and high seas, including the Atlantic, Arctic and Indian Ocean, the Mediterranean Sea and the Persian Gulf. Focusing on beta-lactamases (bla, bla, and bla), sulfonamides (sul1) and tetracycline (tetA), our results showed that sul1 was ubiquitous, indicating widespread dissemination. Notably, the Mediterranean Sea exhibited higher levels of multiple ARGs in single samples, suggesting significant anthropogenic impact. Interestingly, the Arctic Ocean, particularly around the Svalbard Islands, also showed the presence of multiple ARGs, highlighting the pervasive occurrence of antibiotic resistance in remote areas. We employed two clustering approaches to explore ARG patterns, primarily focusing on identifying geographic trends and differences in ARG abundance. Additionally, we investigated potential sources of contamination, including proximity to wastewater treatment plants, ports, marine traffic, and currents. These findings clearly demonstrate that antibiotic resistance gene contamination is widespread across diverse marine environments, with significant regional variations. This underscores the urgent need for tailored intervention strategies and global collaboration to mitigate the spread of ARGs and manage their complex dynamics in marine ecosystems.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2024.176765DOI Listing

Publication Analysis

Top Keywords

antibiotic resistance
16
resistance genes
8
mediterranean sea
8
bla bla
8
multiple args
8
args
5
global quantification
4
quantification distribution
4
antibiotic
4
distribution antibiotic
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!