AI Article Synopsis

  • Microplastics (MPs) are polluting marine environments and may disrupt key processes in sediments, impacting the overall health of benthic ecosystems.
  • A study exposed marine sediments to a mix of common MPs over 30 days and found altered organic matter composition, including a decrease in lipids and an increase in proteins.
  • Results showed that contaminated sediments experienced reduced carbon degradation rates and changes in enzymatic activities, indicating MPs can significantly affect marine sediment biogeochemistry and potentially harm benthic food webs.

Article Abstract

Microplastics (MPs) are ubiquitous and constantly accumulating in the marine environment, especially sediments. Yet, it is not well clarified if and how their carbon backbone could interact with surrounding sediments, eventually impairing key benthic processes. We assessed the effects of a 'pulse' contamination event of MPs on sedimentary organic matter (OM) quantity, quality and extracellular enzymatic activities (EEAs), which are well established descriptors of benthic ecosystem functioning. Marine sediments were exposed for 30 days to environmentally relevant concentrations (∼0.2 % in weight) of naturally weathered particles (size range 70-210 μm) of polyurethane, polyethylene, and a mixture of the most common polymers that are documented to accumulate in marine sediments. Despite the low concentration, contaminated sediments showed significantly different composition of OM, showing a decrease in lipid content and increase in protein. Moreover, we document a significant decrease (over 25 %) in quantity of biopolymeric C already after 15 days of exposure, compared to controls. Contaminated sediments showed lower C degradation rates (up to -40 %) and altered EEAs, with alkaline phosphatase being ∼50 % enhanced and aminopeptidase being reduced over 35 % compared to control treatments. Overall, the effects generated by the mixture of polymers were smaller than those exerted by the same amount of a single polymer. Our results provide insights on how that MPs can significantly alter marine sedimentary biogeochemistry through altered benthic processes, that could cumulatively impair whole benthic trophic webs by enhancing the accumulation and possible longer-term storage of recalcitrant organic C in the seabed.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2024.176795DOI Listing

Publication Analysis

Top Keywords

marine sediments
12
extracellular enzymatic
8
enzymatic activities
8
organic matter
8
benthic processes
8
contaminated sediments
8
sediments
7
marine
5
microplastics impair
4
impair extracellular
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!