Phosphorus (P) rich runoff from agricultural landscapes is a major contributor to freshwater eutrophication. Vegetated riparian zones are often employed to retain P from field runoff before it enters streams. In cold regions, vegetation has the potential to release P to runoff following freezing; however, it is unclear if this differs with winter frost severity, riparian zone local topography, vegetation type, and/or exposure to flooding/inundation. To explore the vulnerability of riparian vegetation to winter P losses, this study quantified soil and vegetation P concentrations from 8 riparian zones in Canada at different topographic positions within each riparian site (upper/field edge, lower/water edge) in both the fall and spring seasons and related this to observed surface temperatures and water levels throughout the non-growing season. This was complemented by two laboratory mesocosm experiments in which (1) plant samples were subjected to moderate (-4C) and severe (-25C) simulated winter frost treatments to quantify changes in their water extractable P (WEP) content, and (2) mesocosms were inundated with water to determine if dissolved P concentrations in flood water differed when plants were left intact, clipped but left on the soil surface, or harvested. Greater soil and vegetation P concentrations were observed at upper locations (field edge), and this remained consistent following freezing; however, vegetation WEP concentrations increased with greater simulated frost severity. In the field, temperatures were moderated by snow cover and although differences with riparian zone position were apparent between fall and spring collected samples, changes in P pools did not appear to be related to frost severity or inundation in the field. The mesocosm experiment revealed that harvesting vegetation considerably reduced dissolved P concentrations in flood water. This study shows that vegetated riparian zones can act as a source of P to streams during the winter non-growing season, and highlights the potential for riparian vegetation management in reducing P losses from riparian zones in cold climates.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jenvman.2024.122710 | DOI Listing |
J Environ Manage
December 2024
School of Design, Shanghai Jiao Tong University, Shanghai, 200240, China. Electronic address:
This study delves into the multi-scale temporal and spatial variations of soil heat flux (G) within riparian zones and its correlation with net radiation (Rn) across six riparian woodlands in Shanghai, each characterized by distinct vegetation types. The objective is to assess the complex interrelations between G and Rn, and how these relationships are influenced by varying vegetation and seasons. Over the course of a year, data on G and Rn is collected to investigate their dynamics.
View Article and Find Full Text PDFJ Environ Qual
December 2024
Department of Geography and Environmental Systems, University of Maryland, Baltimore County, Baltimore, Maryland, USA.
Hydrologic alterations associated with urbanization can weaken connections between riparian zones, streams, and uplands, leading to negative effects on the ability of riparian zones to intercept pollutants carried by surface water runoff and groundwater flow such as nitrate (NO ) and phosphate (PO ). We analyzed the monthly water table as an indicator of riparian connectivity, along with groundwater NO and PO concentrations, at four riparian sites within and near the Gwynns Falls Watershed in Baltimore, MD, from 1998 to 2018. The sites included one forested reference site (Oregon Ridge), two suburban riparian sites (Glyndon and Gwynnbrook), and one urban riparian site (Cahill) with at least two locations and four monitoring wells, located 5 m from the center of the stream, at each site.
View Article and Find Full Text PDFWater Res
November 2024
Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), College of Environment and Ecology, Chongqing University, Chongqing 400045, China. Electronic address:
Riparian zones are recognized as major sources of greenhouse gas emissions, particularly methane (CH). Denitrifying anaerobic methane oxidation (DAMO) has garnered growing attention due to its significant contribution to mitigating CH emissions in wetland environments. Nonetheless, the specific role and microbial mechanisms of DAMO in controlling CH release within riparian zones are still not well comprehended.
View Article and Find Full Text PDFEcotoxicol Environ Saf
November 2024
Key Lab of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130021, People's Republic of China; College of New Energy and Environment, Jilin University, Changchun 130021, People's Republic of China; Institute of Water Resources and Environment, Jilin University, Changchun 130021, People's Republic of China.
Sci Total Environ
December 2024
School of Geography and Environment, Jiangxi Normal University, Nanchang 330022, Jiangxi, China; Key Laboratory of Poyang Lake Wetland and Watershed Research, Ministry of Education, Jiangxi Normal University, Nanchang 330022, Jiangxi, China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!