Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Intracellular calcium is an important regulator of solute transport in renal epithelial cells, and disordered calcium signaling may underlie the pathogenesis of certain kidney diseases. Intravital multiphoton imaging of the kidney in transgenic mice expressing highly sensitive fluorescent reporters allows detailed study of calcium signals within different specialized segments of the renal tubule and how these are integrated with other cellular processes. Moreover, changes in activity can be observed in real time in response to physiological interventions or disease-causing insults. In this chapter, we will provide a detailed protocol for performing this powerful research technique.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/978-1-0716-4164-4_14 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!