Protein phosphatase 2A activators under investigation for smoking-related chronic obstructive pulmonary disease and related disorders.

Expert Opin Investig Drugs

Faculty of Medicine, 3rd Department, University of Medicine and Pharmacy, Carol Davila Bucuresti, Bucuresti, Romania.

Published: November 2024

AI Article Synopsis

  • Chronic obstructive pulmonary disease (COPD) and other chronic respiratory disorders like cystic fibrosis and alpha-one antitrypsin deficiency share inflammation and progression characteristics, prompting investigations into anti-inflammatory treatments.
  • A systematic review of studies from 2000 onward focuses on the role of protein phosphatase 2A (PP2A) in inflammation, its suppression by smoking, and the potential benefits of its activation in treating COPD.
  • Experts suggest that activating PP2A could be a viable therapy for COPD and related disorders, highlighting promising avenues like repurposing metformin and inhalation methods, although most evidence is still in the experimental stage.

Article Abstract

Introduction: Chronic obstructive pulmonary disease (COPD) is characterized by progressive inflammation during therapy. Cystic fibrosis (CF), alpha-one antitrypsin deficiency (AATD), and non-CF bronchiectasis are also chronic respiratory disorders with inflammation and progression that share many similarities with COPD. Therefore, various anti-inflammatory approaches are currently being investigated, and protein phosphatase 2A (PP2A) activators may represent one such approach.

Areas Covered: Systematic review of papers published from 2000-to date on the anti-inflammatory role of endogenous PP2A, the consequences of its inhibition by smoking, and the beneficial effects of its activation in COPD.

Expert Opinion: PP2A activation is a plausible therapeutic approach in COPD and related disorders, such as CF, AATD, and non-CF bronchiectasis, although the available evidence is still mostly experimental. Metformin repurposing and consideration of inhalation for some of the molecules discussed in this study are promising approaches.

Download full-text PDF

Source
http://dx.doi.org/10.1080/13543784.2024.2416982DOI Listing

Publication Analysis

Top Keywords

protein phosphatase
8
chronic obstructive
8
obstructive pulmonary
8
pulmonary disease
8
aatd non-cf
8
non-cf bronchiectasis
8
phosphatase activators
4
activators investigation
4
investigation smoking-related
4
smoking-related chronic
4

Similar Publications

Repressing cytokine storm-like response in macrophages by targeting the eIF2α-integrated stress response pathway.

Int Immunopharmacol

January 2025

Department of Geriatric Medicine, Qilu Hospital of Shandong University, Shandong University, Jinan, Shandong Province, China. Electronic address:

Cytokine storm is a life-threatening systemic hyper-inflammatory state caused by different etiologies, in which the bulk production of pro-inflammatory cytokines from activated macrophages has a central role. Integrated stress response (ISR) comprises several protective signaling pathways, leading to phosphorylation of eukaryotic initiation factor 2α (eIF2α) and repression of protein translation. Emerging evidence suggests that ISR induction may elicit anti-inflammatory effects.

View Article and Find Full Text PDF

Functional differences between rodent and human PD-1 linked to evolutionary divergence.

Sci Immunol

January 2025

Department of Cell and Developmental Biology, School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA.

Mechanistic understanding of the inhibitory immunoreceptor PD-1 is largely based on mouse models, but human and mouse PD-1 share only 59.6% amino acid identity. Here, we found that human PD-1 is more inhibitory than mouse PD-1, owing to stronger interactions with the ligands PD-L1 and PD-L2 and more efficient recruitment of the effector phosphatase Shp2.

View Article and Find Full Text PDF

Studies have noted the connection between Mycobacterium avium subspecies paratuberculosis (MAP) and autoimmunity. MAP is an intracellular pathogen that infects and multiplies in macrophages. To overcome the hostile environment elicited by the macrophage, MAP secretes a battery of virulence factors to neutralize the toxic effects of the macrophage.

View Article and Find Full Text PDF

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

Michigan State University, Grand Rapids, MI, USA.

Background: The pathological correlate most tightly associated with cognitive decline in AD is synapse loss. The presence of pathological tau significantly correlates with synaptotoxicity and cognitive decline in AD, yet it is currently unclear how pathological tau causes synapse loss. Within the brain, complement component C1q coats the outer membrane of weak or damaged synapses, resulting in the phagocytic removal of tagged synapses by microglia.

View Article and Find Full Text PDF

GPSD: a hybrid learning framework for the prediction of phosphatase-specific dephosphorylation sites.

Brief Bioinform

November 2024

Department of Bioinformatics and Systems Biology, MOE Key Laboratory of Molecular Biophysics, Hubei Bioinformatics and Molecular Imaging Key Laboratory, Center for Artificial Intelligence Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Luoyu Road 1037, Wuhan, Hubei 430074, China.

Protein phosphorylation is dynamically and reversibly regulated by protein kinases and protein phosphatases, and plays an essential role in orchestrating a wide range of biological processes. Although a number of tools have been developed for predicting kinase-specific phosphorylation sites (p-sites), computational prediction of phosphatase-specific dephosphorylation sites remains to be a great challenge. In this study, we manually curated 4393 experimentally identified site-specific phosphatase-substrate relationships for 3463 dephosphorylation sites occurring on phosphoserine, phosphothreonine, and/or phosphotyrosine residues, from the literature and public databases.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!