A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Freezing and bioreactor in the low-concentration detergents: A novel approach in the decellularization of small-diameter arteries. | LitMetric

AI Article Synopsis

  • Using a diluted 0.3% SDS solution for decellularizing small-diameter vascular bypass substitutes preserves the structural integrity of pig arteries better than the commonly used 0.5% SDS solution.
  • The study involves the use of physical methods like freezing and thawing, and takes measures to evaluate cell removal effectiveness and the safety of the resulting acellular tissues.
  • Results showed minimal residual DNA and no significant changes in mechanical properties, with the decellularized samples promoting cell growth, making them suitable for use in clinical blood vessel transplantation.

Article Abstract

Using decellularized small-diameter vascular bypass substitutes (<6 mm) is an efficient method for bypass grafting. A solution containing 0.5% SDS (weight/volume) is commonly used for extended periods to generate acellular tissues. However, this solution causes damage to the microfibril structure and alters the mechanical forces. Hence, the objective of this study is to reduce the concentration of SDS to preserve the structure and achieve efficient decellularization. The study employs a diluted solution of 0.3% SDS (weight/volume) to treat fresh and frozen swine small-diameter arteries, utilizing physical methods such as freezing and thawing. The effectiveness of cell removal was evaluated using histological analysis and the remaining DNA content of the sample. Furthermore, the acellular circuit also assesses the cytotoxicity and proliferation of HUVECs to gauge their safety. Through the use of 0.3% SDS, a bioreactor system, and freezing-thawing, the pig arteries are successfully decellularized, resulting in residual DNA levels of less than 50 ng/mg dry weight. This process does not cause any major changes to the biomechanical or structural properties of the arteries. The acellular samples exhibit no toxicity on the L929 cell line and promote the growth of HUVECs at their highest rate on the fourth day. This allows for the placement of acellular vascular grafts to evaluate physiological processes within the animal body. This is an important requirement in clinical blood vessel transplantation.

Download full-text PDF

Source
http://dx.doi.org/10.1177/03913988241288369DOI Listing

Publication Analysis

Top Keywords

freezing bioreactor
4
bioreactor low-concentration
4
low-concentration detergents
4
detergents novel
4
novel approach
4
approach decellularization
4
decellularization small-diameter
4
small-diameter arteries
4
arteries decellularized
4
decellularized small-diameter
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!