AI Article Synopsis

  • Glioblastoma stem cells (GSCs) contribute to the aggressive nature of glioblastoma by making the tumor resistant to therapies, and high levels of γ-Glutamylcyclotransferase (GGCT) are linked to this resistance.
  • Inhibition of GGCT reduces GSC proliferation, and its expression is regulated by the protein c-Jun, which is influenced by the NRas protein.
  • GGCT knockdown not only hampers GSC growth but also disrupts the Delta-Notch signaling pathway by lowering Notch1 levels, suggesting GGCT is a promising target for new glioblastoma treatments.

Article Abstract

Glioblastoma stem cells (GSCs) have been reported to cause poor prognosis of glioblastoma by contributing to therapy resistance. γ-Glutamylcyclotransferase (GGCT) is highly expressed in various cancer types, including glioblastoma, and its inhibition suppresses cancer cell growth. However, the mechanism of GGCT overexpression and its function in GSCs are unknown. In this study, we show that GGCT is highly expressed in GSCs established from a mouse glioblastoma model and its knockdown suppresses their proliferation. Effects of NRas and its downstream transcription factor c-Jun on GGCT expression were analyzed; NRas knockdown reduced c-Jun and GGCT expression. Knockdown of c-Jun also reduced expression levels of GGCT and inhibited cell proliferation. Consistent with this, pharmacological inhibition of c-Jun with SP600125 reduced GGCT and inhibited GSC proliferation. Furthermore, the GGCT promoter-reporter assay with mutagenesis demonstrated that c-Jun regulates the activity of the GGCT promoter via AP-1 consensus sequence. Gene expression analysis revealed that GGCT knockdown showed a repressive effect on the Delta-Notch pathway and decreased Notch1 expression. Notch1 knockdown alone inhibited the GSC proliferation, confirming that Notch1 is functional in this model. Forced expression of the Notch1 intracellular domain restored the growth inhibitory effect of GGCT knockdown. Moreover, GGCT knockdown inhibited GSC tumorigenic potential in vivo. These results indicate that GGCT, whose expression is promoted by c-Jun, plays an important role in the proliferation and tumorigenic potential of GSCs, and that the phenotype caused by its knockdown is contributed by a decrease in Notch1. Thus, GGCT may represent a novel therapeutic target for attacking GSCs.

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41417-024-00835-yDOI Listing

Publication Analysis

Top Keywords

ggct
14
ggct expression
12
inhibited gsc
12
ggct knockdown
12
glioblastoma stem
8
stem cells
8
ggct highly
8
highly expressed
8
knockdown
8
c-jun ggct
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!