Quantifying the use and potential benefits of artificial intelligence in scientific research.

Nat Hum Behav

Center for Science of Science and Innovation, Northwestern University, Evanston, IL, USA.

Published: December 2024

AI Article Synopsis

  • * A new measurement framework shows that while AI is widely used in science and has been growing since 2015, there is a significant gap between the education in AI and its actual application in research settings.
  • * The study highlights demographic disparities, revealing that fields with more women or Black scientists are experiencing fewer advantages from AI, raising concerns about equity and sustainability in scientific research.

Article Abstract

The rapid advancement of artificial intelligence (AI) is poised to reshape almost every line of work. Despite enormous efforts devoted to understanding AI's economic impacts, we lack a systematic understanding of the benefits to scientific research associated with the use of AI. Here we develop a measurement framework to estimate the direct use of AI and associated benefits in science. We find that the use and benefits of AI appear widespread throughout the sciences, growing especially rapidly since 2015. However, there is a substantial gap between AI education and its application in research, highlighting a misalignment between AI expertise supply and demand. Our analysis also reveals demographic disparities, with disciplines with higher proportions of women or Black scientists reaping fewer benefits from AI, potentially exacerbating existing inequalities in science. These findings have implications for the equity and sustainability of the research enterprise, especially as the integration of AI with science continues to deepen.

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41562-024-02020-5DOI Listing

Publication Analysis

Top Keywords

artificial intelligence
8
benefits
5
quantifying potential
4
potential benefits
4
benefits artificial
4
intelligence scientific
4
scientific rapid
4
rapid advancement
4
advancement artificial
4
intelligence poised
4

Similar Publications

Mild cognitive impairment (MCI) is a significant predictor of the early progression of Alzheimer's disease, and it can be used as an important indicator of disease progression. However, many existing methods focus mainly on the image itself when processing brain imaging data, ignoring other non-imaging data (e.g.

View Article and Find Full Text PDF

Chronic pain is a pervasive and debilitating condition with increasing implications for public health, affecting millions of individuals worldwide. Despite its high prevalence, the underlying neural mechanisms and pathophysiology remain only partly understood. Since its introduction 35 years ago, brain diffusion magnetic resonance imaging (MRI) has emerged as a powerful tool to investigate changes in white matter microstructure and connectivity associated with chronic pain.

View Article and Find Full Text PDF

Learning the language of antibody hypervariability.

Proc Natl Acad Sci U S A

January 2025

Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139.

Protein language models (PLMs) have demonstrated impressive success in modeling proteins. However, general-purpose "foundational" PLMs have limited performance in modeling antibodies due to the latter's hypervariable regions, which do not conform to the evolutionary conservation principles that such models rely on. In this study, we propose a transfer learning framework called Antibody Mutagenesis-Augmented Processing (AbMAP), which fine-tunes foundational models for antibody-sequence inputs by supervising on antibody structure and binding specificity examples.

View Article and Find Full Text PDF

Confined cell migration along extracellular matrix space in vivo.

Proc Natl Acad Sci U S A

January 2025

Center for Complexity and Biosystems, Department of Environmental Science and Policy, University of Milan, 20133 Milan, Italy.

Collective migration of cancer cells is often interpreted using concepts derived from the physics of active matter, but the experimental evidence is mostly restricted to observations made in vitro. Here, we study collective invasion of metastatic cancer cells injected into the mouse deep dermis using intravital multiphoton microscopy combined with a skin window technique and three-dimensional quantitative image analysis. We observe a multicellular but low-cohesive migration mode characterized by rotational patterns which self-organize into antiparallel persistent tracks with orientational nematic order.

View Article and Find Full Text PDF

Background: Large language models (LLMs) have been proposed as valuable tools in medical education and practice. The Chinese National Nursing Licensing Examination (CNNLE) presents unique challenges for LLMs due to its requirement for both deep domain-specific nursing knowledge and the ability to make complex clinical decisions, which differentiates it from more general medical examinations. However, their potential application in the CNNLE remains unexplored.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!