Employing machine learning for advanced gap imputation in solar power generation databases.

Sci Rep

Polytechnic School of Engineering (POLI-UPE), Postgraduate Program in Systems Engineering, University of Pernambuco (UPE), Recife, Brazil.

Published: October 2024

AI Article Synopsis

  • The research focuses on using advanced machine learning algorithms like Random Forest and Gradient Boosting to fill in missing data in solar energy generation databases, which helps improve green hydrogen production systems.
  • Random Forest outperforms other models, achieving high accuracy with strong predictive metrics like a mean absolute error (MAE) of 0.0364 and an R² of 0.9779, making it more effective than traditional models like linear regression.
  • The study highlights the importance of robust data imputation methods for enhancing the efficiency of photovoltaic systems and emphasizes their role in optimizing renewable energy technologies and resource management.

Article Abstract

This research evaluates the application of advanced machine learning algorithms, specifically Random Forest and Gradient Boosting, for the imputation of missing data in solar energy generation databases and their impact on the size of green hydrogen production systems. The study demonstrates that the Random Forest model notably excels in harnessing solar data to optimize hydrogen production, achieving superior prediction accuracy with mean absolute error (MAE) of 0.0364, mean squared error (MSE) of 0.0097, root mean squared error (RMSE) of 0.0985, and a coefficient of determination (R) of 0.9779. These metrics surpass those obtained from baseline models including linear regression and recurrent neural networks, highlighting the potential of accurate imputation to significantly enhance the efficiency and output of renewable energy systems. The findings advocate for the integration of robust data imputation methods in the design and operation of photovoltaic systems, contributing to the reliability and sustainability of energy resource management. Furthermore, this research makes significant contributions by showcasing the comparative performance of traditional machine learning models in handling data gaps, emphasizing the practical implications of data imputation on optimizing hydrogen production systems. By providing a detailed analysis and validation of the imputation models, this work offers valuable insights for future advancements in renewable energy technology.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11470137PMC
http://dx.doi.org/10.1038/s41598-024-74342-3DOI Listing

Publication Analysis

Top Keywords

machine learning
12
hydrogen production
12
generation databases
8
random forest
8
production systems
8
squared error
8
renewable energy
8
data imputation
8
imputation
6
data
5

Similar Publications

Introduction: Wearables are electronic devices worn on the body to collect health data. These devices, like smartwatches and patches, use sensors to gather information on various health parameters. This review highlights current use and the potential benefit of wearable technology in patients with inflammatory bowel disease (IBD).

View Article and Find Full Text PDF

Chronic obstructive pulmonary disease (COPD) is a prevalent chronic inflammatory airway disease with high incidence and significant disease burden. R-loops, functional chromatin structure formed during transcription, are closely associated with inflammation due to its aberrant formation. However, the role of R-loop regulators (RLRs) in COPD remains unclear.

View Article and Find Full Text PDF

This study investigates the electronic properties and photovoltaic (PV) performance of newly designed bithiophene-based dyes, focusing on their light harvesting efficiency (LHE), open-circuit voltage (V), fill factor (FF), and short-circuit current density (J).These new dyes are designed with the help of machine learning (ML) to design best donor acceptor designs. For this, we collect 2567 differenr electron donor groups and calculated their bandgap with the help of Random Forest (RF) Regression method.

View Article and Find Full Text PDF

IL-33, a neutrophil extracellular trap-related gene involved in the progression of diabetic kidney disease.

Inflamm Res

January 2025

Department of Nephrology, First Affiliated Hospital of Naval Medical University, Shanghai Changhai Hospital, Shanghai, China.

Background: Chronic inflammation is well recognized as a key factor related to renal function deterioration in patients with diabetic kidney disease (DKD). Neutrophil extracellular traps (NETs) play an important role in amplifying inflammation. With respect to NET-related genes, the aim of this study was to explore the mechanism of DKD progression and therefore identify potential intervention targets.

View Article and Find Full Text PDF

Soil microbiota plays crucial roles in maintaining the health, productivity, and nutrient cycling of terrestrial ecosystems. The persistence and prevalence of heterocyclic compounds in soil pose significant risks to soil health. However, understanding the links between heterocyclic compounds and microbial responses remains challenging due to the complexity of microbial communities and their various chemical structures.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!