Deep-learning-based attenuation map generation in kidney single photon emission computed tomography.

EJNMMI Phys

Department of Health Science and Technology, Graduate School of Convergence Science and Technology, Seoul National University, Gwanggyo-ro 145, Yeongtong-gu, Suwon, Gyeonggi-do, 16229, Republic of Korea.

Published: October 2024

Background: Accurate attenuation correction (AC) is vital in nuclear medicine, particularly for quantitative single-photon emission computed tomography/computed tomography (SPECT/CT) imaging. This study aimed to establish a CT-free quantification technology in kidney SPECT imaging using deep learning to generate synthetic attenuation maps (μ-maps) from SPECT data, thereby reducing radiation exposure and eliminating the need for CT scans.

Results: A dataset of 1000 Tc-99m DTPA SPECT/CT scans was analyzed for training (n = 800), validation (n = 100), and testing (n = 100) using a modified 3D U-Net for deep learning. The study investigated the use of primary emission and scattering SPECT data, normalization methods, loss function optimization, and up-sampling techniques for optimal μ-map generation. The problem of checkerboard artifacts, unique to μ-map generation from SPECT signals, and the effects of iodine contrast media were evaluated. The addition of scattering SPECT to primary emission SPECT imaging, logarithmic maximum normalization, the combination of absolute difference loss (L) and three times the absolute gradient difference loss (3 × L), and the nearest-neighbor interpolation significantly enhanced AI performance in μ-map generation (p < 0.00001). Checkerboard artifacts were effectively eliminated using the nearest-neighbor interpolation technique. The developed AI algorithm produced μ-maps neutral to the presence of iodine contrast and showed negligible contrast effects on quantitative SPECT measurement, such as glomerular filtration rate (GFR). The potential reduction in radiation exposure by transitioning to AI-based CT-free SPECT imaging ranges from 45.3 to 78.8%.

Conclusion: The study successfully developed and optimized a deep learning algorithm for generating synthetic μ-maps in kidney SPECT images, demonstrating the potential to transition from conventional SPECT/CT to CT-free SPECT imaging for GFR measurement. This advancement represents a significant step towards enhancing patient safety and efficiency in nuclear medicine.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11469987PMC
http://dx.doi.org/10.1186/s40658-024-00686-4DOI Listing

Publication Analysis

Top Keywords

spect imaging
16
deep learning
12
μ-map generation
12
spect
10
emission computed
8
nuclear medicine
8
kidney spect
8
spect data
8
radiation exposure
8
primary emission
8

Similar Publications

Purpose: Long axial field-of-view (LAFOV) positron emission tomography/computed tomography (PET/CT) scanners enable high sensitivity and wide anatomical coverage. Therefore, they seem ideal to perform post-selective internal radiation therapy (SIRT) Y scans, which are needed, to confirm that the dose is delivered to the tumors and that healthy organs are spared. However, it is unclear to what extent the use of LAFOV PET is feasible and which dosimetry approaches results in accurate measurements.

View Article and Find Full Text PDF

Iodine-131 radioembolization boosts the immune activation enhanced by icaritin/resiquimod in hepatocellular carcinoma.

J Control Release

December 2024

Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Center for Biomedical Imaging, Fudan University, Shanghai 200032, China; Shanghai Engineering Research Center of Molecular Imaging Probes, Shanghai 200032, China; Key Laboratory of Nuclear Physics and Ion-beam Application (MOE), Fudan University, Shanghai 200433, China. Electronic address:

Transarterial radioembolization (TARE) is a recommended locoregional strategy for intermediate hepatocellular carcinoma (HCC), whereas, the effect is insufficient to reverse the immunosuppression tumor microenvironment, and the overall benefits for patients remain to be improved. In this study, a multifunctional microsphere (MS) I-ICT/R848-MS is developed to propose an approach combined with TARE, icaritin (ICT) and immune modulator resiquimod (R848). ICT and iodine-131 (I) radiation can induce immunogenic cell death, which, in combination with R848, will boost dendritic cell (DC) maturation.

View Article and Find Full Text PDF

Objective: At our institute, most pediatric patients undergo epilepsy surgery following a thorough presurgical evaluation without intracranial electroencephalography (EEG). We conducted an initial validation of our noninvasive presurgical strategy by assessing the seizure and developmental outcomes of 135 children.

Methods: All 135 pediatric patients were <15 years old, had undergone curative surgery, and were followed for at least 2 years postoperatively.

View Article and Find Full Text PDF

In same-day radioembolization, 99mTc-MAA SPECT/CT, 90Y radioembolization, and post-treatment 90Y SPECT/CT procedures are conducted on the same-day, resulting in a dual-isotope environment of 90Y and 99mTc during post-treatment imaging. This study aimed to quantify the impact of 99mTc on 90Y bremsstrahlung-SPECT/CT image quality and to establish an optimised imaging protocol for both clinical practice, and with advanced reconstruction techniques. Utilising a NEMA IQ phantom, contrast recovery coefficients (CRCs) were measured to evaluate the 90Y image quality degradation caused by 99mTc.

View Article and Find Full Text PDF

Background: In radioembolization therapy for hepatic malignancies, the accurate estimation of lung shunt fraction (LSF) is crucial to minimize the risk of radiation-induced pneumonitis and fibrosis due to hepatopulmonary shunting of yttrium-90 (90Y)-microspheres. This study aimed to compare the accuracy and precision of LSF estimation using technetium-99m macroaggregated albumin single photon emission computed tomography ([99mTc]Tc-MAA SPECT) LSF, [99mTc]Tc-MAA planar LSF, and 90Y PET LSF in patients undergoing 90Y-radioembolization.

Material And Methods: A retrospective study was conducted involving 15 patients diagnosed with hepatocellular carcinoma (HCC) or liver metastases and planned to undergo transarterial radioembolization with 90Y SirSpheres after multidisplinary team discussion.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!