Endophytic bacteria live in the internal tissues of plants, forming symbiotic, mutualistic, commensalistic and trophobiotic relationships. Some are spread via seeds after sprouting from the rhizosphere or phyllosphere. These bacteria capable of promoting plant growth and impart biotic stress by synthesing plant growth hormones, ACC deaminase, organic acids and siderophore. Endophytes aid in phytoremediation by removing soil contaminants and boosting soil fertility via phosphate solubilization and nitrogen fixation. The endophytic microbes are becoming increasingly popular in biotechnological applications which supports sustainable growth of non-food crops for biomass and biofuel. They offer valuable natural materials which is used in medicine, agriculture and industry. Bacterial endophytes are endowed with the enormous potential in the biological treatment of plant pathogens and considered as the superior alternative to synthetic fungicides. The review emphasizes benefits of bacterial endophytes in promoting plant growth and prospects of agricultural applications viz., increasing crop yield under biotic stress condition and their mode of action towards plant diseases. It also summarises the diverse and vital role of endophytes in agroecosystems as well as insights for sustainable agriculture and crop resilience.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00284-024-03918-z | DOI Listing |
Front Plant Sci
January 2025
Institute of Biological, Environmental and Rural Sciences (IBERS) Aberystwyth University, Aberystwyth, United Kingdom.
Nitrogen and water are the primary resources limiting agricultural production worldwide. We have demonstrated the ability of a novel halotolerant bacterial endophyte, s CBE, to induce osmotic stress tolerance in under nitrogen-deprived conditions. Additionally, we aimed to identify the molecular factors in plants that contribute to the beneficial effects induced by CBE in .
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Xinjiang Key Laboratory of Special Environmental Microbiology, Institute of Microbiology, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China.
Soil salinization poses a significant challenge to global agriculture, particularly in arid and semi-arid regions like Xinjiang. , a halophytic plant adapted to saline-alkaline conditions, harbors endophytic microorganisms with potential plant growth-promoting properties. In this study, 177 endophytic bacterial strains were isolated from , and 11 key strains were identified through functional screening based on salt tolerance, nutrient solubilization, and growth-promoting traits.
View Article and Find Full Text PDFMicroorganisms
January 2025
College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China.
Bacterial canker of kiwifruit is the most destructive bacterial disease caused by pv. . Bacteriophages are regarded as promising biocontrol agents against kiwifruit bacterial pathogens due to their exceptional host specificity and environmentally friendly nature.
View Article and Find Full Text PDFMicroorganisms
December 2024
Institute of Horticulture, Lithuanian Research Centre for Agriculture and Forestry, Kaunas Str. 30, 54333 Babtai, Kaunas reg., Lithuania.
Plants inhabiting environments with suboptimal growth conditions often have a more pronounced capacity to attract and sustain microbial communities that improve nutrient absorption and expand abiotic stress tolerance. L. is a succulent plant of the family adapted to survive in sandy or rocky soils or dry tundra.
View Article and Find Full Text PDFSci Rep
January 2025
School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima, 30000, Thailand.
Bradyrhizobium sp. strain SUTN9-2 demonstrates cell enlargement, increased DNA content, and efficient nitrogen fixation in response to rice (Oryza sativa) extract. This response is attributed to the interaction between the plant's cationic antimicrobial peptides (CAMPs) and the Bradyrhizobium BacA-like transporter (BclA), similar to bacteroid in legume nodules.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!