Most simulations of electric field driven bioeffects have considered spherical cellular geometries or probed symmetrical structures for simplicity. This work assesses cellular transmembrane potential build-up and electroporation in a Jurkat cell that includes the endoplasmic reticulum (ER) and mitochondria, both of which have complex shapes, in response to external nanosecond electric pulses. The simulations are based on a time-domain nodal analysis that incorporates membrane poration utilizing the Smoluchowski model with angular-dependent changes in membrane conductivity. Consistent with prior experimental reports, the simulations show that the ER requires the largest electric field for electroporation, while the inner mitochondrial membrane (IMM) is the easiest membrane to porate. Our results suggest that the experimentally observed increase in intracellular calcium could be due to a calcium induced calcium release (CICR) process that is initiated by outer cell membrane breakdown. Repeated pulsing and/or using multiple electrodes are shown to create a stronger poration. The role of mutual coupling, screening, and proximity effects in bringing about electric field modifications is also probed. Finally, while including greater geometric details might refine predictions, the qualitative trends are expected to remain.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11470013 | PMC |
http://dx.doi.org/10.1038/s41598-024-74659-z | DOI Listing |
Adv Sci (Weinh)
January 2025
Department of Chemistry, Stanford University, 380 Roth Way, Stanford, CA, 94305, USA.
Partial oxidation of methane (POM) is achieved by forming air-methane microbubbles in saltwater to which an alternating electric field is applied using a copper oxide foam electrode. The solubility of methane is increased by putting it in contact with water containing dissolved KCl or NaCl (3%). Being fully dispersed as microbubbles (20-40 µm in diameter), methane reacts more fully with hydroxyl radicals (OH·) at the gas-water interface.
View Article and Find Full Text PDFFront Cell Neurosci
January 2025
The Research Center for Brain Function and Medical Engineering, Asahikawa Medical University, Asahikawa, Japan.
The evolution of brain-expressed genes is notably slower than that of genes expressed in other tissues, a phenomenon likely due to high-level functional constraints. One such constraint might be the integration of information by neuron assemblies, enhancing environmental adaptability. This study explores the physiological mechanisms of information integration in neurons through three types of synchronization: chemical, electromagnetic, and quantum.
View Article and Find Full Text PDFRSC Adv
January 2025
Faculty of Physics & Engineering Physics, VNUHCM-University of Science Ho Chi Minh City 70000 Vietnam
Direct current magnetron sputtering was employed to fabricate In-N dual-doped SnO films, with varying concentrations of N in a mixed sputtering gas of N and argon (Ar). The quantity of -substituted O elements in the SnO lattice was confirmed through energy-dispersive X-ray spectroscopy (EDX) and X-ray photoelectron spectroscopy (XPS). A comprehensive investigation of properties of the In-N dual-doped SnO films was conducted using various techniques, including X-ray diffraction analysis, field-emission scanning electron microscopy (FESEM), atomic force microscopy (AFM), ultraviolet absorption spectroscopy, Hall effect measurements, and current-voltage (-) characteristic assessments.
View Article and Find Full Text PDFFront Bioeng Biotechnol
January 2025
Rehabilitation Department, Jilin Electric Power Hospital, Changchun, China.
Rehabilitation assessments hold an irreplaceable role in the field of rehabilitative therapy. However, due to the subjectivity of traditional physicians and the variability of patient conditions, this leads to a lack of detailed grading and inaccurate assessment results. To address this issue, we developed an upper limb rehabilitation evaluation model.
View Article and Find Full Text PDFExp Astron (Dordr)
January 2025
Institute of Space Sciences and Astronomy, University of Malta, Msida, Malta.
We detail the REACH radiometric system designed to enable measurements of the 21-cm neutral hydrogen line. Included is the radiometer architecture and end-to-end system simulations as well as a discussion of the challenges intrinsic to highly-calibratable system development. Following this, we share laboratory results based on the calculation of noise wave parameters utilising an over-constrained least squares approach.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!